Skip to main content

Glutamate-mediated bi-directional signaling between neurons and astrocytes

  • Chapter
Glial ⇔ Neuronal Signaling

Abstract

Functional plasticity is an important property of the central nervous system (CNS). A major site for this plasticity is at the chemical synapse. Here, neurons and astrocytes intermingle forming a morphologically intimate relationship (Chapters 3 and 4) where astrocytes are favorably positioned to exchange signals with neurons (Figure 15.1). Ca2+ entry though voltage-gated channels into the presynaptic terminal signals to the secretory machinery, which allows the release of neurotransmitter stored in synaptic vesicles into the synaptic cleft. Released neurotransmitter then signals to the postsynaptic neuron by activating its receptors (Figure 15.1, arrow 1). Under certain circumstances, neurotransmitter can ‘spillover’ from the synaptic cleft and reach neurotransmitter receptors in adjacent astrocytes (Figure 15.1, arrow 2), eliciting astrocytic increases in intracellular Ca2+ ion concentration [Ca2+]i. These evoked and/or spontaneous elevations of [Ca2+]i in astrocytes can cause the release of a neurotransmitter, e.g., glutamate, from astrocytes, which signals to the presynaptic nerve terminal to modulate synaptic neurotransmission and/or released glutamate can affect postsynaptic cells (Figure 15.1, arrows 3 and 4). Additional signaling can occur between astrocytes in the form of intercellular Ca2+ waves (Figure 15.1, arrows 5; Chapters 12-14). In this chapter the focus is on glutamate-mediated bi-directional signaling between neurons and astrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ACh:

Acetylcholine

AChBP:

ACh binding protein

AMPA:

α-amino-3-hydroxy-5-methyl-isoxazole propionate

ATP:

Adenosine 5′-triphosphate

BAPTA:

1,2-bis(2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid

CNQX:

6-cyano-7-nitroquinoxaline-2,3-dione

CNS:

Central nervous system

CXCR4:

CXC Chemokine receptor 4

DAP5:

D-2-amino-phosphonopentanoic acid

DGG:

D-glutamylglycine

DMSO:

Dimethyl sulfoxide

EGTA:

Ethylene glycol-bis(2-aminoethyl)-N,N, N’,N’-tetraacetic acid

GABA:

γ-aminobutyric acid

GDH:

L-glutamate dehydrogenase

GFAP:

Glial fibrillary acidic protein

GluR:

Glutamate receptor

GlyR:

Glycine receptor

HIV-1:

Human immunodeficiency virus 1

iGluR:

Ionotropic glutamate receptor

LAP3:

2-amino-3-phosphonopropionic acid

LHRH:

Luteinizing hormone-releasing hormone

LTD:

Long-term depression

LTP:

Long-term potentiation

MAP-4:

(S)-2-amino-2-methyl-4-phosphonobutanoic acid

MCPG:

(S)-α-methyl-4-carboxyphenylglycine

mEPSC:

Miniature excitatory postsynaptic currents

mGluR:

Metabotropic glutamate receptor

mIPSC:

Miniature inhibitory postsynaptic currents

mPSC:

Miniature postsynaptic currents

nAChR:

Nicotinic acetylcholine receptors

NAD+ :

γ-nicotinamide adenine dinucleotide

NMDAR:

N-methyl D-aspartate receptors

NP-EGTA:

o-nitrophenyl-EGTA

PGE2 :

Prostaglandin E2

SIC:

Slow inward current

SNAP-23/25:

Synaptosome-associated protein of 23 or 25 kDa

SNARE:

Soluble N-ethyl maleimide-sensitive fusion protein attachment protein receptor

t-ACPD:

(1S, 3R)-1-aminocyclopentane-1, 3-dicarboxlylic acid

TNFα:

Tumor Necrosis Factor α

UV:

Ultraviolet

V-ATPase:

Vacuolar-type H+-ATPase

VGLUT:

Vesicular glutamate transporter

[X]i :

Intracellular concentration of ion/molecule X

[X]o :

Extracellular concentration of ion/molecule X

References

  • Alvarez-Maubecin V, Garcia-Hernandez F, Williams JT, Van Bockstaele EJ (2000) Functional coupling between neurons and glia. J Neurosci 20:4091–4098.

    PubMed  CAS  Google Scholar 

  • Anlauf E, Derouiche A (2002) Exocytosis markers label glutamate-containing vesicles in cultured astrocytes. Glia Suppl 1:33.

    Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1998a) Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci 10:2129–2142.

    PubMed  CAS  Google Scholar 

  • Araque A, Sanzgiri RP, Parpura V, Haydon PG (1998b) Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J Neurosci 18:6822–6829.

    PubMed  CAS  Google Scholar 

  • Araque A, Sanzgiri RP, Parpura V, Haydon PG (1999) Astrocyte-induced modulation of synaptic transmission. Can J Physiol Pharmacol 77:699–706.

    PubMed  CAS  Google Scholar 

  • Araque A, Li N, Doyle RT, Haydon PG (2000) SNARE protein-dependent glutamate release from astrocytes. J Neurosci 20:666–673.

    PubMed  CAS  Google Scholar 

  • Araque A, Martin ED, Perea G, Arellano JI, Buno W (2002) Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. J Neurosci 22:2443–2450.

    PubMed  CAS  Google Scholar 

  • Arcuino G, Lin JH, Takano T, Liu C, Jiang L, Gao Q, Kang J, Nedergaard M (2002) Intercellular calcium signaling mediated by point-source burst release of ATP. Proc Natl Acad Sci U S A 99:9840–9845.

    PubMed  CAS  Google Scholar 

  • Augustine GJ, Eckert R (1984) Divalent cations differentially support transmitter release at the squid giant synapse. J Physiol 346:257–271.

    PubMed  CAS  Google Scholar 

  • Baylor DA, Nicholls JG (1969) Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech. J Physiol 203:555–569.

    PubMed  CAS  Google Scholar 

  • Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNFalpha. Science 295:2282–2285.

    PubMed  CAS  Google Scholar 

  • Bekkers JM, Stevens CF (1991) Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proc Natl Acad Sci U S A 88:7834–7838.

    PubMed  CAS  Google Scholar 

  • Bergles DE, Jahr CE (1998) Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J Neurosci 18:7709–7716.

    PubMed  CAS  Google Scholar 

  • Bergles DE, Roberts JD, Somogyi P, Jahr CE (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:187–191.

    PubMed  CAS  Google Scholar 

  • Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391:281–285.

    PubMed  CAS  Google Scholar 

  • Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710.

    PubMed  CAS  Google Scholar 

  • Braet K, Paemeleire K, D’Herde K, Sanderson MJ, Leybaert L (2001) Astrocyte-endothelial cell calcium signals conveyed by two signalling pathways. Eur J Neurosci 13:79–91.

    PubMed  CAS  Google Scholar 

  • Buijs RM, van Vulpen EH, Geffard M (1987) Ultrastructural localization of GABA in the supraoptic nucleus and neural lobe. Neuroscience 20:347–355.

    PubMed  CAS  Google Scholar 

  • Calegari F, Coco S, Taverna E, Bassetti M, Verderio C, Corradi N, Matteoli M, Rosa P (1999) A regulated secretory pathway in cultured hippocampal astrocytes. J Biol Chem 274:22539–22547.

    PubMed  CAS  Google Scholar 

  • Carmignoto G, Pasti L, Pozzan T (1998) On the role of voltage-dependent calcium channels in calcium signaling of astrocytes in situ. J Neurosci 18:4637–4645.

    PubMed  CAS  Google Scholar 

  • Charles AC (1994) Glia-neuron intercellular calcium signaling. Dev Neurosci 16:196–206.

    PubMed  CAS  Google Scholar 

  • Charles AC, Merrill JE, Dirksen ER, Sanderson MJ (1991) Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6:983–992.

    PubMed  CAS  Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473.

    PubMed  CAS  Google Scholar 

  • Cotrina ML, Lin JH, Lopez-Garcia JC, Naus CC, Nedergaard M (2000) ATP-mediated glia signaling. J Neurosci 20:2835–2844.

    PubMed  CAS  Google Scholar 

  • Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8:429–440.

    PubMed  CAS  Google Scholar 

  • Decavel C, Hatton GI (1995) Taurine immunoreactivity in the rat supraoptic nucleus: prominent localization in glial cells. J Comp Neurol 354:13–26.

    PubMed  CAS  Google Scholar 

  • Deleuze C, Duvoid A, Hussy N (1998) Properties and glial origin of osmotic-dependent release of taurine from the rat supraoptic nucleus. J Physiol 507 (Pt 2):463–471.

    PubMed  CAS  Google Scholar 

  • Do KQ, Benz B, Sorg O, Pellerin L, Magistretti PJ (1997) beta-Adrenergic stimulation promotes homocysteic acid release from astrocyte cultures: evidence for a role of astrocytes in the modulation of synaptic transmission. J Neurochem 68:2386–2394.

    PubMed  CAS  Google Scholar 

  • Dodge FA, Jr., Rahamimoff R (1967) Co-operative action a calcium ions in transmitter release at the neuromuscular junction. J Physiol 193:419–432.

    PubMed  CAS  Google Scholar 

  • Duffy S, MacVicar BA (1995) Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J Neurosci 15:5535–5550.

    PubMed  CAS  Google Scholar 

  • Dziedzic B, Prevot V, Lomniczi A, Jung H, Cornea A, Ojeda SR (2003) Neuron-to-glia signaling mediated by excitatory amino acid receptors regulates ErbB receptor function in astroglial cells of the neuroendocrine brain. J Neurosci 23:915–926.

    PubMed  CAS  Google Scholar 

  • Fiacco TA, McCarthy KD (2004) Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMP A receptor currents in CA1 pyramidal neurons. J Neurosci 24:722–732.

    PubMed  CAS  Google Scholar 

  • Finkbeiner S (1992) Calcium waves in astrocytes-filling in the gaps. Neuron 8:1101–1108.

    PubMed  CAS  Google Scholar 

  • Fremeau RT, Jr., Burman J, Qureshi T, Tran CH, Proctor J, Johnson J, Zhang H, Sulzer D, Copenhagen DR, Storm-Mathisen J, Reimer RJ, Chaudhry FA, Edwards RH (2002) The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci U S A 99:14488–14493.

    PubMed  CAS  Google Scholar 

  • Froes MM, Correia AH, Garcia-Abreu J, Spray DC, Campos de Carvalho AC, Neto MV (1999) Gap-junctional coupling between neurons and astrocytes in primary central nervous system cultures. Proc Natl Acad Sci U S A 96:7541–7546.

    PubMed  CAS  Google Scholar 

  • Furshpan EJ, Landis SC, Matsumoto SG, Potter DD (1986) Synaptic functions in rat sympathetic neurons in microcultures. I. Secretion of norepinephrine and acetylcholine. J Neurosci 6:1061–1079.

    PubMed  CAS  Google Scholar 

  • Gerlai R, Wojtowicz JM, Marks A, Roder J (1995) Overexpression of a calcium-binding protein, S100 beta, in astrocytes alters synaptic plasticity and impairs spatial learning in transgenic mice. Learn Mem 2:26–39.

    PubMed  CAS  Google Scholar 

  • Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2:139–143.

    PubMed  CAS  Google Scholar 

  • Guthrie PB, Segal M, Kater SB (1991) Independent regulation of calcium revealed by imaging dendritic spines. Nature 354:76–80.

    PubMed  CAS  Google Scholar 

  • Hassinger TD, Atkinson PB, Strecker GJ, Whalen LR, Dudek FE, Kossel AH, Kater SB (1995) Evidence for glutamate-mediated activation of hippocampal neurons by glial calcium waves. JNeurobiol 28:159–170.

    CAS  Google Scholar 

  • Hepp R, Perraut M, Chasserot-Golaz S, Galli T, Aunis D, Langley K, Grant NJ (1999) Cultured glial cells express the SNAP-25 analogue SNAP-23. Glia 27:181–187.

    PubMed  CAS  Google Scholar 

  • Hosli L, Hosli E, Zehntner C, Lehmann R, Lutz TW (1982) Evidence for the existence of alpha- and beta-adrenoceptors on cultured glial cells-an electrophysiological study. Neuroscience 7:2867–2872.

    PubMed  CAS  Google Scholar 

  • Hosli L, Hosli E, Delia Briotta G, Quadri L, Heuss L (1988) Action of acetylcholine, muscarine, nicotine and antagonists on the membrane potential of astrocytes in cultured rat brainstem and spinal cord. Neurosci Lett 92:165–170.

    PubMed  CAS  Google Scholar 

  • Hua X, Rosenwald SR, Parpura V (2002) Calcium-dependent glutamate release involves two classes of endoplasmic reticulum (ER) Ca2+ stores in astrocytes. Soc Neurosci Abst, 527.3.

    Google Scholar 

  • Hua X, Malarkey EB, Sunjara V, Rosenwald SR, Li W-h, Parpura V (2004) Ca2+- dependent glutamate release involves two classes of endoplasmic reticulum Ca2+ stores in astrocytes. J Neurosci Res In Press.

    Google Scholar 

  • Hussy N, Deleuze C, Pantaloni A, Desarmenien MG, Moos F (1997) Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neurones: possible role in osmoregulation. J Physiol 502 (Pt 3):609–621.

    PubMed  CAS  Google Scholar 

  • Hussy N, Bres V, Rochette M, Duvoid A, Alonso G, Dayanithi G, Moos FC (2001) Osmoregulation of vasopressin secretion via activation of neurohypophysial nerve terminals glycine receptors by glial taurine. J Neurosci 21:7110–7116.

    PubMed  CAS  Google Scholar 

  • Innocenti B, Parpura V, Haydon PG (2000) Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J Neurosci 20:1800–1808.

    PubMed  CAS  Google Scholar 

  • Jalonen TO, Margraf RR, Wielt DB, Charniga CJ, Linne ML, Kimelberg HK (1997) Serotonin induces inward potassium and calcium currents in rat cortical astrocytes. Brain Res 758:69–82.

    PubMed  CAS  Google Scholar 

  • Janigro D, Gasparini S, D’Ambrosio R, McKhann G, 2nd, DiFrancesco D (1997) Reduction of K+ uptake in glia prevents long-term depression maintenance and causes epileptiform activity. J Neurosci 17:2813–2824.

    PubMed  CAS  Google Scholar 

  • Jeftinija SD, Jeftinija KV, Stefanovic G (1997) Cultured astrocytes express proteins involved in vesicular glutamate release. Brain Res 750:41–47.

    PubMed  CAS  Google Scholar 

  • Jeftinija SD, Jeftinija KV, Stefanovic G, Liu F (1996) Neuroligand-evoked calcium-dependent release of excitatory amino acids from cultured astrocytes. J Neurochem 66:676–684.

    PubMed  CAS  Google Scholar 

  • Jensen AM, Chiu SY (1990) Fluorescence measurement of changes in intracellular calcium induced by excitatory amino acids in cultured cortical astrocytes. J Neurosci 10:1165–1175.

    PubMed  CAS  Google Scholar 

  • Jeremic A, Jeftinija K, Stevanovic J, Glavaski A, Jeftinija S (2001) ATP stimulates calcium-dependent glutamate release from cultured astrocytes. J Neurochem 77:664–675.

    PubMed  CAS  Google Scholar 

  • Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:683–692.

    PubMed  CAS  Google Scholar 

  • Kaul M, Garden GA, Lipton SA (2001) Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410:988–994.

    PubMed  CAS  Google Scholar 

  • Kimelberg HK, Goderie SK, Higman S, Pang S, Waniewski RA (1990) Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci 10:1583–1591.

    PubMed  CAS  Google Scholar 

  • Koizumi S, Fujishita K, Tsuda M, Shigemoto-Mogami Y, Inoue K (2003) Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures. Proc Natl Acad Sci U S A 100:11023–11028.

    PubMed  CAS  Google Scholar 

  • Krzan M, Stenovec M, Kreft M, Pangrsic T, Grilc S, Haydon PG, Zorec R (2003) Calcium-dependent exocytosis of atrial natriuretic peptide from astrocytes. J Neurosci 23:1580–1583.

    PubMed  CAS  Google Scholar 

  • Laming PR, Sykova E, Reichenbach A, Hatton GI, Bauer H (Eds.) Glial cells and their role in behaviour. Cambridge University Press, Cambridge, U.K. 1998

    Google Scholar 

  • Latour I, Hamid J, Beedle AM, Zamponi GW, Macvicar BA (2003) Expression of voltage-gated Ca2+ channel subtypes in cultured astrocytes. Glia 41:347–353.

    PubMed  Google Scholar 

  • Lin SC, Bergles DE (2004) Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nat Neurosci 7:24–32.

    PubMed  CAS  Google Scholar 

  • Ma JY, Zhao ZQ (2002) The involvement of glia in long-term plasticity in the spinal dorsal horn of the rat. Neuroreport 13:1781–1784.

    PubMed  CAS  Google Scholar 

  • MacVicar BA (1984) Voltage-dependent calcium channels in glial cells. Science 226:1345–1347.

    PubMed  CAS  Google Scholar 

  • Maienschein V, Marxen M, Volknandt W, Zimmermann H (1999) A plethora of presynaptic proteins associated with ATP-storing organelles in cultured astrocytes. Glia 26:233–244.

    PubMed  CAS  Google Scholar 

  • McCall MA, Gregg RG, Behringer RR, Brenner M, Delaney CL, Galbreath EJ, Zhang CL, Pearce RA, Chiu SY, Messing A (1996) Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci U S A 93:6361–6366.

    PubMed  CAS  Google Scholar 

  • Mennerick S, Zorumski CF (1994) Glial contributions to excitatory neurotransmission in cultured hippocampal cells. Nature 368:59–62.

    PubMed  CAS  Google Scholar 

  • Milner TA, Kurucz OS, Veznedaroglu E, Pierce JP (1995) Septohippocampal neurons in the rat septal complex have substantial glial coverage and receive direct contacts from noradrenaline terminals. Brain Res 670:121–136.

    PubMed  CAS  Google Scholar 

  • Miyata S, Matsushima O, Hatton GI (1997) Taurine in rat posterior pituitary: localization in astrocytes and selective release by hypoosmotic stimulation. J Comp Neurol 381:513–523.

    PubMed  CAS  Google Scholar 

  • Montana V, Ni Y, Sunjara V, Hua X, Parpura V (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci In Press.

    Google Scholar 

  • Mothet JP, Parent AT, Wolosker H, Brady RO, Jr., Linden DJ, Ferris CD, Rogawski MA, Snyder SH (2000) D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A 97:4926–4931.

    PubMed  CAS  Google Scholar 

  • Mudrick-Donnon LA, Williams PJ, Pittman QJ, MacVicar BA (1993) Postsynaptic potentials mediated by GABA and dopamine evoked in stellate glial cells of the pituitary pars intermedia. JNeurosci 13:4660–4668.

    CAS  Google Scholar 

  • Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263:1768–1771.

    PubMed  CAS  Google Scholar 

  • Nett WJ, Oloff SH, McCarthy KD (2002) Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J Neurophysiol 87:528–537.

    PubMed  Google Scholar 

  • Newman EA (2003) Glial cell inhibition of neurons by release of ATP. J Neurosci 23:1659–1666.

    PubMed  CAS  Google Scholar 

  • Newman EA, Zahs KR (1998) Modulation of neuronal activity by glial cells in the retina. J Neurosci 18:4022–4028.

    PubMed  CAS  Google Scholar 

  • Ni Y, Sunjara V, Parpura V (2003) Expression of vesicular glutamate transporters in cultured astrocytes. FASEB J 17:A457 Part 451 Suppl.

    Google Scholar 

  • Ojeda SR, Ma YJ, Lee BJ, Prevot V (2000) Glia-to-neuron signaling and the neuroendocrine control of female puberty. Recent Prog Horm Res 55:197–223; discussion 223–194.

    PubMed  CAS  Google Scholar 

  • Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29:788–806.

    PubMed  CAS  Google Scholar 

  • Otis TS, Wu YC, Trussell LO (1996) Delayed clearance of transmitter and the role of glutamate transporters at synapses with multiple release sites. J Neurosci 16:1634–1644.

    PubMed  CAS  Google Scholar 

  • Parpura V, Haydon PG (1999a) “Uncaging” using optical fibers to deliver UV light directly to the sample. Croat Med J 40:340–345.

    PubMed  CAS  Google Scholar 

  • Parpura V, Haydon PG (1999b) UV photolysis using a micromanipulated optical fiber to deliver UV energy directly to the sample. J Neurosci Methods 87:25–34.

    PubMed  CAS  Google Scholar 

  • Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci U S A 97:8629–8634.

    PubMed  CAS  Google Scholar 

  • Parpura V, Fang Y, Basarsky T, Jahn R, Haydon PG (1995a) Expression of synaptobrevin II, cellubrevin and syntaxin but not SNAP-25 in cultured astrocytes. FEBS Lett 377:489–492.

    PubMed  CAS  Google Scholar 

  • Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747.

    PubMed  CAS  Google Scholar 

  • Parpura V, Liu F, Brethorst S, Jeftinija K, Jeftinija S, Haydon PG (1995b) Alpha-latrotoxin stimulates glutamate release from cortical astrocytes in cell culture. FEBS Lett 360:266–270.

    PubMed  CAS  Google Scholar 

  • Parri HR, Crunelli V (2001) Pacemaker calcium oscillations in thalamic astrocytes in situ. Neuroreport 12:3897–3900.

    PubMed  CAS  Google Scholar 

  • Parri HR, Crunelli V (2003) The role of Ca2+ in the generation of spontaneous astrocytic Ca2+ oscillations. Neuroscience 120:979–992.

    PubMed  CAS  Google Scholar 

  • Parri HR, Gould TM, Crunelli V (2001) Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 4:803–812.

    PubMed  CAS  Google Scholar 

  • Pasti L, Pozzan T, Carmignoto G (1995) Long-lasting changes of calcium oscillations in astrocytes. A new form of glutamate-mediated plasticity. J Biol Chem 270:15203–15210.

    PubMed  CAS  Google Scholar 

  • Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17:7817–7830.

    PubMed  CAS  Google Scholar 

  • Pasti L, Zonta M, Pozzan T, Vicini S, Carmignoto G (2001) Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J Neurosci 21:477–484.

    PubMed  CAS  Google Scholar 

  • Peracchia C (1981) Direct communication between axons and sheath glial cells in crayfish. Nature 290:597–598.

    PubMed  CAS  Google Scholar 

  • Peters A, Palay SL, Webster Hd (1991) The fine structure of the nervous system, 3rd Edition. New York-Oxford: Oxford University Press.

    Google Scholar 

  • Petrenko AG (1993) alpha-Latrotoxin receptor. Implications in nerve terminal function. FEBS Lett 325:81–85.

    PubMed  CAS  Google Scholar 

  • Pizzo P, Burgo A, Pozzan T, Fasolato C (2001) Role of capacitative calcium entry on glutamate-induced calcium influx in type-I rat cortical astrocytes. J Neurochem 79:98–109.

    PubMed  CAS  Google Scholar 

  • Poelchen W, Sieler D, Wirkner K, Illes P (2001) Co-transmitter function of ATP in central catecholaminergic neurons of the rat. Neuroscience 102:593–602.

    PubMed  CAS  Google Scholar 

  • Porter JT, McCarthy KD (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16:5073–5081.

    PubMed  CAS  Google Scholar 

  • Pow DV (1993) Immunocytochemistry of amino-acids in the rodent pituitary using extremely specific, very high titre antisera. J Neuroendocrinol 5:349–356.

    PubMed  CAS  Google Scholar 

  • Queiroz G, Gebicke-Haerter PJ, Schobert A, Starke K, von Kugelgen I (1997) Release of ATP from cultured rat astrocytes elicited by glutamate receptor activation. Neuroscience 78:1203–1208.

    PubMed  CAS  Google Scholar 

  • Ransom BR, Goldring S (1973) Slow depolarization in cells presumed to be glia in cerebral cortex of cat. J Neurophysiol 36:869–878.

    PubMed  CAS  Google Scholar 

  • Redman RS, Silinsky EM (1994) ATP released together with acetylcholine as the mediator of neuromuscular depression at frog motor nerve endings. J Physiol 477 (Pt 1): 117–127.

    PubMed  CAS  Google Scholar 

  • Sanzgiri RP, Araque A, Haydon PG (1999) Prostaglandin E(2) stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cells. J Neurobiol 41:221–229.

    PubMed  CAS  Google Scholar 

  • Sastry BR, Goh JW, May PB, Chirwa SS (1988) The involvement of nonspiking cells in long-term potentiation of synaptic transmission in the hippocampus. Can J Physiol Pharmacol 66:841–844.

    PubMed  CAS  Google Scholar 

  • Schell MJ, Molliver ME, Snyder SH (1995) D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A 92:3948–3952.

    PubMed  CAS  Google Scholar 

  • Shain W, Connor JA, Madelian V, Martin DL (1989) Spontaneous and beta-adrenergic receptor-mediated taurine release from astroglial cells are independent of manipulations of intracellular calcium. J Neurosci 9:2306–2312.

    PubMed  CAS  Google Scholar 

  • Sharma G, Vijayaraghavan S (2001) Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci U S A 98:4148–4153.

    PubMed  CAS  Google Scholar 

  • Shibuki K, Gomi H, Chen L, Bao S, Kim JJ, Wakatsuki H, Fujisaki T, Fujimoto K, Katoh A, Ikeda T, Chen C, Thompson RF, Itohara S (1996) Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16:587–599.

    PubMed  CAS  Google Scholar 

  • Smit AB, Syed NI, Schaap D, van Minnen J, Klumperman J, Kits KS, Lodder H, van der Schors RC, van Elk R, Sorgedrager B, Brejc K, Sixma TK, Geraerts WP (2001) A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature 411:261–268.

    PubMed  CAS  Google Scholar 

  • Smith SJ, Augustine GJ, Charlton MP (1985) Transmission at voltage-clamped giant synapse of the squid: evidence for cooperativity of presynaptic calcium action. Proc Natl Acad Sci U S A 82:622–625.

    PubMed  CAS  Google Scholar 

  • Sperlagh B, Sershen H, Lajtha A, Vizi ES (1998) Co-release of endogenous ATP and [3H]noradrenaline from rat hypothalamic slices: origin and modulation by alpha2-adrenoceptors. Neuroscience 82:511–520.

    PubMed  CAS  Google Scholar 

  • Stanley EF (1986) Decline in calcium cooperativity as the basis of facilitation at the squid giant synapse. J Neurosci 6:782–789.

    PubMed  CAS  Google Scholar 

  • Steinhauser C, Jabs R, Kettenmann H (1994) Properties of GABA and glutamate responses in identified glial cells of the mouse hippocampal slice. Hippocampus 4:19–35.

    PubMed  CAS  Google Scholar 

  • Stephens GJ, Marriott DR, Djamgoz MB, Wilkin GP (1993) Electrophysiological and biochemical evidence for bradykinin receptors on cultured rat cortical oligodendrocytes. Neurosci Lett 153:223–226.

    PubMed  CAS  Google Scholar 

  • Stevens ER, Esguerra M, Kim PM, Newman EA, Snyder SH, Zahs KR, Miller RF (2003) D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMD A receptors. Proc Natl Acad Sci U S A 100:6789–6794.

    PubMed  CAS  Google Scholar 

  • Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488.

    PubMed  CAS  Google Scholar 

  • Tong G, Jahr CE (1994) Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13:1195–1203.

    PubMed  CAS  Google Scholar 

  • Trudeau LE, Fang Y, Haydon PG (1998) Modulation of an early step in the secretory machinery in hippocampal nerve terminals. Proc Natl Acad Sci U S A 95:7163–7168.

    PubMed  CAS  Google Scholar 

  • Ushkaryov YA, Petrenko AG, Geppert M, Sudhof TC (1992) Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science 257:50–56.

    PubMed  CAS  Google Scholar 

  • van Leeuwen FW, Pool CW, Sluiter AA (1983) Enkephalin immunoreactivity in synaptoid elements on glial cells in the rat neural lobe. Neuroscience 8:229–241.

    PubMed  Google Scholar 

  • Ventura R, Harris KM (1999) Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19:6897–6906.

    PubMed  CAS  Google Scholar 

  • Verderio C, Matteoli M (2001) ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-gamma. J Immunol 166:6383–6391.

    PubMed  CAS  Google Scholar 

  • von Kugelgen I, Allgaier C, Schobert A, Starke K (1994) Co-release of noradrenaline and ATP from cultured sympathetic neurons. Neuroscience 61:199–202.

    Google Scholar 

  • Wittkowski W, Brinkmann H (1974) Changes of extent of neuro-vascular contacts and number of neuro-glial synaptoid contacts in the pituitary posterior lobe of dehydrated rats. Anat Embryol (Bed) 146:157–165.

    CAS  Google Scholar 

  • Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO, Jr., Ferris CD, Snyder SH (1999) Purification of serine racemase: biosynthesis of the neuromodulator D-serine. Proc Natl Acad Sci U S A 96:721–725.

    PubMed  CAS  Google Scholar 

  • Yang Y, Ge W, Chen Y, Zhang Z, Shen W, Wu C, Poo M, Duan S (2003) Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc Natl Acad Sci U S A 100:15194–15199.

    PubMed  CAS  Google Scholar 

  • Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL, Wu CP, Poo MM, Duan S (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982.

    PubMed  CAS  Google Scholar 

  • Zhong Y, Wu CF (1991) Altered synaptic plasticity in Drosophila memory mutants with a defective cyclic AMP cascade. Science 251:198–201.

    PubMed  CAS  Google Scholar 

  • Zonta M, Sebelin A, Gobbo S, Fellin T, Pozzan T, Carmignoto G (2003a) Glutamate-mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes. J Physiol 553:407–414.

    PubMed  CAS  Google Scholar 

  • Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003b) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Parpura, V. (2004). Glutamate-mediated bi-directional signaling between neurons and astrocytes. In: Hatton, G.I., Parpura, V. (eds) Glial ⇔ Neuronal Signaling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4020-7937-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-7937-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1069-4

  • Online ISBN: 978-1-4020-7937-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics