Skip to main content

Towards the Rational Design of Hormone Analogs Which Complement Receptor Mutations

  • Chapter
Syndromes of Hormone Resistance on the Hypothalamic-Pituitary-Thyroid Axis

Part of the book series: Endocrine Updates ((ENDO,volume 22))

  • 196 Accesses

Abstract

Mutations to nuclear and steroid hormone receptors (NHRs) are associated with a variety of human genetic diseases (1–3). These mutations generally result in reduced ligand binding or impaired ligand-dependent transactivation (or trans-repression) response. Individuals having mutant receptors that show reduced hormone responsiveness can often be treated with high doses of the natural hormone, however, often supraphysiological doses of hormone can create undesirable side effects that can be ascribed to inappropriate activation of other receptor subtypes and/or other samehormone responsive receptors (4, 5). In such cases hormone analogs have been empirically been used which may be able to impart greater potency activity and selectivity with mutant receptors. Thus far the use of hormone analogs for the functional rescue of impaired receptors has been largely empirical. The high-resolution structures of nuclear receptors may provide the basis to use rational molecular design strategies to efficiently create custom-designed hormone analogs, which may be able to bind to mutant receptors with greater activity, potency and selectivity than the natural hormone or existing hormone analogs. Currently relatively few examples of molecular complementation are known. This chapter will discuss examples from related nuclear receptors and other non-NHR examples to provide perspective to this exciting new area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burris TP, McCabe ERB (eds) 2001 Nuclear Receptors and Genetic Disease. Academic Press, San Diego

    Google Scholar 

  2. Tenbaum S, Baniahmad A 1997 Nuclear receptors: structure, function and involvement in disease. Int J Biochem Cell Biol 29:1325–41

    Article  PubMed  CAS  Google Scholar 

  3. Latchman DS 1996 Transcription-factor mutations and disease. N Engl J Med 334:28–33

    Article  PubMed  CAS  Google Scholar 

  4. Takeda T, Suzuki S, Liu RT, DeGroot LJ 1995 Triiodothyroacetic acid has unique potential for therapy of resistance to thyroid hormone. J Clin Endocrinol Metab 80:2033–40

    Article  PubMed  CAS  Google Scholar 

  5. Weiss RE, Refetoff S 1999 Treatment of resistance to thyroid hormone — Primum non nocere. Journal of Clinical Endocrinology and Metabolism 84:401–404

    Article  PubMed  CAS  Google Scholar 

  6. Barroso I, Gurnell M, Crowley VE, et al. 1999 Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension [see comments]. Nature 402:880–3

    PubMed  CAS  Google Scholar 

  7. Steinmetz ACU, Renaud JP, Moras D 2001 Binding of ligands and activation of transcription by nuclear receptors. Annual Review of Biophysics and Biomolecular Structure 30:329–359

    Article  PubMed  CAS  Google Scholar 

  8. Aranda A, Pascual A 2001 Nuclear hormone receptors and gene expression. Physiol Rev 81:1269–304.

    PubMed  CAS  Google Scholar 

  9. Weatherman RV, Fletterick RJ, Scanlan TS 1999 Nuclear-receptor ligands and ligand-binding domains. Annu Rev Biochem 68:559–81

    Article  PubMed  CAS  Google Scholar 

  10. Meier CA, Parkison C, Chen A, et al. 1993 Interaction of Human Beta-1 ThyroidHormone Receptor and Its Mutants with DNA and Retinoid-X Receptor-Beta T(3) Response Element Dependent Dominant-Negative Potency. Journal of Clinical Investigation 92:1986–1993

    Article  PubMed  CAS  Google Scholar 

  11. Collingwood TN, Wagner R, Matthews CH, et al. 1998 A role for helix 3 of the TRbeta ligand-binding domain in coactivator recruitment identified by characterization of a third cluster of mutations in resistance to thyroid hormone. Embo J 17:4760–70

    Article  PubMed  CAS  Google Scholar 

  12. Liu Y, Takeshita A, Misiti S, Chin WW, Yen PM 1998 Lack of coactivator interaction can be a mechanism for dominant negative activity by mutant thyroid hormone receptors. Endocrinology 139:4197–204

    Article  PubMed  CAS  Google Scholar 

  13. Yoh SM, Privalsky ML 2000 Resistance to thyroid hormone (RTH) syndrome reveals novel determinants regulating interaction of T3 receptor with corepressor [published erratum appears in Mol Cell Endocrinol 2000 Apr 25;162(1–2):235]. Mol Cell Endocrinol 159:109–24

    CAS  Google Scholar 

  14. Clifton-Bligh RJ, de Zegher F, Wagner RL, et al. 1998 A novel TR beta mutation (R383H) in resistance to thyroid hormone syndrome predominantly impairs corepressor release and negative transcriptional regulation. Mol Endocrinol 12:609–21

    Article  PubMed  CAS  Google Scholar 

  15. Piedrafita FJ, Ortiz MA, Pfahl M 1995 Thyroid hormone receptor-beta mutants associated with generalized resistance to thyroid hormone show defects in their ligand-sensitive repression function. Mol Endocrinol 9:1533–48

    Article  PubMed  CAS  Google Scholar 

  16. Malloy PJ, Feldman D 1999 Vitamin D resistance. Am J Med 106:355–70

    Article  PubMed  CAS  Google Scholar 

  17. Groenhout EG, Dorin RI 1994 Generalized thyroid hormone resistance due to a deletion of the carboxy terminus of the c-erbA beta receptor. Mol Cell Endocrinol 99:81–8

    Article  PubMed  CAS  Google Scholar 

  18. Phillips SA, Rotman-Pikielny P, Lazar J, et al. 2001 Extreme thyroid hormone resistance in a patient with a novel truncated TR mutant. Journal of Clinical Endocrinology and Metabolism 86:5142–5147

    Article  PubMed  CAS  Google Scholar 

  19. Bernier V, Morello JP, Salahpour A, et al. 2002 A pharmacological chaperone acting at the V2-vasopressin receptor offers a treatment for nephrogenic diabetes insipidus. Faseb Journal 16:A142-A143

    Google Scholar 

  20. Morello JP, Salahpour A, Laperriere A, et al. 2000 Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. Journal of Clinical Investigation 105:887–895

    Article  PubMed  CAS  Google Scholar 

  21. Foster BA, Coffey HA, Morin MJ, Rastinejad F 1999 Pharmacological rescue of mutant p53 conformation and function [see comments]. Science 286:2507–10

    Article  PubMed  CAS  Google Scholar 

  22. Ames BN, Elson-Schwab I, Silver EA 2002 High-dose vitamin therapy stimulates variant enzymes with decreased coenzyme binding affinity (increased K-m): relevance to genetic disease and polymorphisms. American Journal of Clinical Nutrition 75:616–658

    PubMed  CAS  Google Scholar 

  23. Gardezi SA, Nguyen C, Malloy PJ, Posner GH, Feldman D, Peleg S 2001 A rationale for treatment of hereditary vitamin D-resistant rickets with analogs of 1 alpha,25-dihydroxyvitamin D-3. Journal of Biological Chemistry 276:29148–29156

    Article  PubMed  CAS  Google Scholar 

  24. Bishop AC, Ubersax JA, Petsch DT, et al. 2000 A chemical switch for inhibitorsensitive alleles of any protein kinase. Nature 407:395–401

    Article  PubMed  CAS  Google Scholar 

  25. Belshaw PJ, Schoepfer JG, Liu K-Q, Morrison KL, Schreiber SL 1995 Rational Design of Orthogonal Receptor-Ligand Combinations. Angew. Chem., Int. Ed. Engl. 34:2129–2132

    Article  CAS  Google Scholar 

  26. Liu Y, Shah K, Yang F, Witucki L, Shokat KM 1998 Engineering Src family protein kinases with unnatural nucleotide specificity. Chem. Biol. 5:91–101.

    Article  PubMed  CAS  Google Scholar 

  27. Lin Q, Jiang FY, Schultz PG, Gray NS 2001 Design of allele-specific protein methyltransferase inhibitors. Journal of the American Chemical Society 123:11608–11613

    Article  PubMed  CAS  Google Scholar 

  28. Witucki LA, Huang X, Shah K, et al. 2002 Mutant tyrosine kinases with unnatural nucleotide specificity retain the structure and phospho-acceptor specificity of the wild-type enzyme. Chemistry & Biology 9:25–33

    Article  CAS  Google Scholar 

  29. Gillespie PG, Gillespie SK, Mercer JA, Shah K, Shokat KM 1999 Engineering of the myosin-ibeta nucleotide-binding pocket to create selective sensitivity to N(6)-modified ADP analogs. J. Biol. Chem. 274:31373–81.

    Article  PubMed  CAS  Google Scholar 

  30. Tedesco R, Thomas JA, Katzenellenbogen BS, Katzenellenbogen JA 2001 The estrogen receptor: a structure-based approach to the design of new specific hormone-receptor combinations. Chem. Biol. 8:277–87.

    Article  PubMed  CAS  Google Scholar 

  31. Shi YH, Koh JT 2002 Functionally orthogonal ligand-receptor pairs for the selective regulation of gene expression generated by manipulation of charged residues at the ligand-receptor interface of ER alpha and ER beta. Journal of the American Chemical Society 124:6921–6928

    Article  PubMed  CAS  Google Scholar 

  32. Shi Y, Koh JT 2001 Selective regulation of gene expression by an orthogonal estrogen receptor-ligand pair created by polar-group exchange. Chem. Biol. 8:501–10.

    Article  PubMed  CAS  Google Scholar 

  33. Doyle DF, Mangelsdorf DJ, Corey DR 2000 Modifying ligand specificity of gene regulatory proteins. Curr Opin Chem Biol 4:60–3

    Article  PubMed  CAS  Google Scholar 

  34. Doyle DF, Braasch DA, Jackson LK, et al. 2001 Engineering Orthogonal LigandReceptor Pairs From “Near Drugs”. J. Am. Chem. Soc. 123:11367–11371

    Article  PubMed  CAS  Google Scholar 

  35. Peet DJ, Doyle DF, Corey DR, Mangelsdorf DJ 1998 Engineering novel specificities for ligand-activated transcription in the nuclear hormone receptor RXR. Chem. Biol. 5:13–21

    Article  PubMed  CAS  Google Scholar 

  36. Miller N, Whelan J 1998 Random mutagenesis of human estrogen receptor ligand binding domain identifies mutations that decrease sensitivity to estradiol and increase sensitivity to a diphenol indene-ol compound: basis for a regulatable expression system. J. Steroid. Biochem. Mol. Biol. 64:129–35

    Article  PubMed  CAS  Google Scholar 

  37. Refetoff S, Weiss RE, Usala SJ 1993 The syndromes of resistance to thyroid hormone. Endocr Rev 14:348–99

    PubMed  CAS  Google Scholar 

  38. Messier N, Langlois MF 2000 Triac regulation of transcription is T-3 receptor isoform- and response element-specific. Molecular and Cellular Endocrinology 165:57–66

    Article  PubMed  CAS  Google Scholar 

  39. Farach-Carson MC, Ridall AL 1998 Dual 1,25-dihydroxyvitamin D3 signal response pathways in osteoblasts: cross-talk between genomic and membraneinitiated pathways. Am J Kidney Dis 31:729–42

    Article  PubMed  CAS  Google Scholar 

  40. Khoury R, Ridall AL, Norman AW, Farachcarson MC 1993 Analogs of VitaminD(3) Selectively Activate Genomic and Nongenomic Pathways in Osteoblasts. Journal of Bone and Mineral Research 8:S220-S220

    Google Scholar 

  41. Malloy PJ, Pike JW, Feldman D 1999 The vitamin D receptor and the syndrome of hereditary 1,25- dihydroxyvitamin D-resistant rickets. Endocr Rev 20:156–88

    Article  PubMed  CAS  Google Scholar 

  42. Malloy PJ, Eccleshall TR, Gross C, VanMaldergem L, Bouillon R, Feldman D 1997 Hereditary vitamin D resistant rickets caused by a novel mutation in the vitamin D receptor that results in decreased affinity for hormone and cellular hyporesponsiveness. Journal of Clinical Investigation 99:297–304

    Article  PubMed  CAS  Google Scholar 

  43. Kristjansson K, Rut AR, Hewison M, O’Riordan JL, Hughes MR 1993 Two mutations in the hormone binding domain of the vitamin D receptor cause tissue resistance to 1,25 dihydroxyvitamin D3. J Clin Invest 92:12–6

    Article  PubMed  CAS  Google Scholar 

  44. Rochel N, Wurtz JM, Mitschler A, Klaholz B, Moras D 2000 The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell 5:173–9

    Article  PubMed  CAS  Google Scholar 

  45. Swann SL, Bergh J, Mary C. Farach-Carson, Ocasio CA, Koh JT 2002 Structure based design of selective agonists for a rickets-associated mutant of the vitamin D receptor. J. Am. Chem. Soc. in press

    Google Scholar 

  46. Swann SL, Bergh JJ, Farach-Carson MC, Koh JT 2002 Rational Design of Vitamin D3 Analogs Which Selectively Restore Activity to a Vitamin D Receptor Mutant Associated With Rickets. Org. Lett. in press

    Google Scholar 

  47. Wagner R, Apriletti JW, McGarth ME, West BL, Baxter JD, Fletterick RJ 1995 A structural role for hormone in the thyroid hormone receptor. Nature 378:690–697

    Article  PubMed  CAS  Google Scholar 

  48. Yen PM 2001 Physiological and molecular basis of thyroid hormone action. Physiological Reviews 81:1097–1142

    PubMed  CAS  Google Scholar 

  49. Beckpeccoz P, Chatterjee VKK 1994 The Variable Clinical Phenotype in ThyroidHormone Resistance Syndrome. Thyroid 4:225–232

    Article  CAS  Google Scholar 

  50. Kahaly GJ, Matthews CH, Mohr-Kahaly S, Richards CA, Chatterjee VKK 2002 Cardiac involvement in thyroid hormone resistance. Journal of Clinical Endocrinology and Metabolism 87:204–212

    Article  PubMed  CAS  Google Scholar 

  51. Wikstrom L, Johansson C, Salto C, et al. 1998 Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. Embo Journal 17:455–461

    Article  PubMed  CAS  Google Scholar 

  52. Scanlan TS, Yoshihara HA, Nguyer N, Chiellini G 2001 Selective Thyromimetics: Tissue-selective thyroid hormone analogs. Current Opinion in Drug Discovery and Development 4:614–622

    CAS  Google Scholar 

  53. Messier N, Laflamme L, Hamann G, Langlois MF 2001 In vitro effect of Triac on resistance to thyroid hormone receptor mutants: potential basis for therapy. Molecular and Cellular Endocrinology 174:59–69

    Article  PubMed  CAS  Google Scholar 

  54. Smallridge RC, Parker RA, Wiggs EA, Rajagopal KR, Fein HG 1989 Thyroid hormone resistance in a large kindred: physiologic, biochemical, pharmacologic, and neuropsychologic studies [published erratum appears in Am J Med 1989 May;86(5):637]. Am J Med 86:289–96

    CAS  Google Scholar 

  55. Ueda S, Takamatsu J, Fukata S, et al. 1996 Differences in response of thyrotropin to 3,5,3′-triiodothyronine and 3,5,3′-triiodothyroacetic acid in patients with resistance to thyroid hormone. Thyroid 6:563–70

    Article  PubMed  CAS  Google Scholar 

  56. Darendeliler F, Bas F 1997 Successful therapy with 3,5,3′-triiodothyroacetic acid (TRIAC) in pituitary resistance to thyroid hormone. J Pediatr Endocrinol Metab 10:535–8

    Article  PubMed  CAS  Google Scholar 

  57. Beck-Peccoz P, Piscitelli G, Cattaneo MG, Fagiia G 1983 Effectiveness of 3,5,3′ Triiodothyroacetic Acid (Triac), but Not Bromocriptine, in Lowering Tsh Secretion in One Hyperthyroid Patient with Non-Neoplastic Pituitary Tsh Hypersecretion. Annales D Endocrinologie 44:A38-A38

    Google Scholar 

  58. Schueler PA, Schwartz HL, Strait KA, Mariash CN, Oppenheimer JH 1990 Binding of 3,5,3′-Triiodothyronine (T3) and Its Analogs to the Invitro Translational Products of C-Erba Protooncogenes — Differences in the Affinity of the Alpha-Forms and Beta-Forms for the Acetic-Acid Analog and Failure of the Human Testis and Kidney Alpha-2 Products to Bind T3. Molecular Endocrinology 4:227–234

    Article  PubMed  CAS  Google Scholar 

  59. Wagner RL, Huber BR, Shiau AK, et al. 2001 Hormone selectivity in thyroid hormone receptors. Molecular Endocrinology 15:398–410

    Article  PubMed  CAS  Google Scholar 

  60. Chiellini G, Apriletti JW, al Yoshihara H, Baxter JD, Ribeiro RC, Scanlan TS 1998 A high-affinity subtype-selective agonist ligand for the thyroid hormone receptor. Chem Biol 5:299–306

    Article  PubMed  CAS  Google Scholar 

  61. Ye HF, O’Reilly KE, Koh JT 2001 A subtype-selective thyromimetic designed to bind a mutant thyroid hormone receptor implicated in resistance to thyroid hormone. J. Am. Chem. Soc. 123:1521–1522

    Article  PubMed  CAS  Google Scholar 

  62. Ribeiro MO, Carvalho SD, Schultz JJ, et al. 2001 Thyroid hormone-sympathetic interaction and adaptive thermogenesis are thyroid hormone receptor isoformspecific. Journal of Clinical Investigation 108:97–105

    PubMed  CAS  Google Scholar 

  63. Furlow JD, Lim W, Ermio DJ, Chiellini G, Scanlan TS 2000 Molecular mechanisms underlying thyroid hormone induced gene expression cascades during amphibian metamorphosis. American Zoologist 40:1022–1023

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Koh, J.T., Putnam, M.C. (2004). Towards the Rational Design of Hormone Analogs Which Complement Receptor Mutations. In: Beck-Peccoz, P. (eds) Syndromes of Hormone Resistance on the Hypothalamic-Pituitary-Thyroid Axis. Endocrine Updates, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4020-7852-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-7852-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1065-6

  • Online ISBN: 978-1-4020-7852-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics