Phylogenetics: Taxonomy and the microsporidia as derived fungi

  • Charles R. Vossbrinck
  • Theodore G. Andreadis
  • Louis M. Weiss
Part of the World Class Parasites book series (WCPA, volume 9)


Microsporidia are a group of obligate eukaryotic intracellular parasites first recognized over 100 years ago with the description of Nosema bombycis the parasite from silkworms that caused the disease pebrine in these economically important insects. Microsporidia infect almost all animal phyla. Among the more than 144 described genera, several have been demonstrated in human disease: Nosema, Vittaforma, Brachiola, Pleistophora, Encephalitozoon, Enterocytozoon, Septata (reclassified to Encephalitozoon) and Trachipleistophora. In addition, the genus Microsporidium has been used to designate microsporidia of uncertain taxonomic status. The recognition of microsporidia as opportunistic pathogens in humans has led to increased interest in the molecular biology of these pathogens. Recent work has focused on the determination of the nucleotide sequences for ribosomal RNA (rRNA) genes, which have been used as diagnostic tools for species identification as well as for the development of a molecular phylogeny of these organisms. Microsporidia have historically been considered to be “primitive” protozoa, however, molecular phylogenetic analysis has led to the recognition that these organisms are not “primitive” but degenerate and that they are related to the fungi and not to other protozoa. Such molecular phylogeny has also led to the recognition that the traditional phylogeny of these organisms based on structural observations may not reflect the “true” relationships among the various microsporidia species and genera. This chapter reviews the data on the taxonomy of the microsporidia and the relationship of these organisms to other eukaryotes.

Key words

Microsporidia rRNA genes molecular phylogeny fungi taxonomy genome analysis evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arisue, N., L.B. Sanchez, L.M. Weiss, M. Muller, and T. Hashimoto. 2002. Mitochondrial-type 70 genes of the amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and two microsporidians. Parasitology International 51: 9–16.PubMedCrossRefGoogle Scholar
  2. Balbiani, G., 1882. Sur les microsporidies ou psorospermies des articules. Comptes rendus de l’Acadedmie des sciences 95: 1168–1171.Google Scholar
  3. Bui, E.T., P.J. Bradley, and P.J. Johnson. 1996. A common evolutionary origin for mitochondira and hydrogenosomes. Proceedings of the National Academy of Sciences USA 93: 9651–9656.CrossRefGoogle Scholar
  4. Bürglin, T.R. 2002. The homeobox genes of Encephalitozoon cuniculi (Microsporidia) reveal a putative mating-type locus. Developmental Genes and Evolution. 213: 50–52.Google Scholar
  5. Cavalier-Smith T. 1987. Eukaryotes with no mitochondria. Nature 326: 332–333.PubMedCrossRefGoogle Scholar
  6. Chen, W, T. Kuo, and S. Wu. 1998. Development of a new microsporidian parasite, Intrapredatorus barri n.g., n.sp. (Microsporidia: Amblyosporidae) from the predacious mosquito Culex fruscanus Wiedemann (Diptera: Culicidae) Parasitology International 47: 183–193.CrossRefGoogle Scholar
  7. Clark, C.G., and A.J. Roger. 1995. Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proceedings of the National Academy of Sciences USA 92: 6518–6521.CrossRefGoogle Scholar
  8. Coyle, C.M., M. Kent, H.B. Tanowtiz, M. Wittner, and L.M. Weiss. 1998. TNP-470 is an effective anti-microsporidial agent. Journal of Infectious Disease 177: 515–518.CrossRefGoogle Scholar
  9. Dayhoff, M.O., R.V. Eck, and C.M. Park. 1972. A model of evolutionary change in proteins, P89–99. In M.O. Dayhoff (ed.) Atlas of Protein Sequence and Structure, vol. 5. National Biomedical Research Foundation, Washington D.C.Google Scholar
  10. Desportes, I. 1976. Ulatrastructure de Stempellia mutabilis leger et Hess, microsporidic parasite de l’ephernere Ephemera vulgatta. L. Protistologica 12: 121–150.Google Scholar
  11. Didier, E.S. 1997. Effects of albendazole, fumagillin and TNP-470 on microsporidial replication in vitro. Antimicrobial Agents and Chemotherapy 41:1541–1546.PubMedGoogle Scholar
  12. DiMaria, P., L. Palic,. B.A. Debrunner-Vossbrinck, J. Lapp, and C.R. Vossbrinck. 1996. Characterization of the highly divergent U2 RNA homolog in the microsporidian Vairimorpha necatrix. Nucleic Acids Research 24: 515–522.PubMedCrossRefGoogle Scholar
  13. Dolflein, F. 1901. Die Protozoen als Parasiten und Krankheitserreger nach biologischen Gesichtspunkten dargestellt. Verlag von Gustav Fisher.Google Scholar
  14. Edlind, T.D., J. Li, G.S. Visvesvara, M.H. Vodkin, G.L. McLaughlin, and S.K. Katiyar. 1996. Phylogenetic analysis of beta-tubulin sequences from amitochondrial protozoa. Molecular Phylogenetics and Evolution 5: 357–367.Google Scholar
  15. —. 1998. Phylogenetics of protozoan tubulin with reference to the amitochondriate eukaryotes. In: Coombs, G.H., K. Vickerman, M.A. Sleigh and A. Warren. Eds. Evolutionary Relationships Among Protozoa. Chapman & Hall, London, pp. (91–108)Google Scholar
  16. Embley, T.M., L.J. Homer, and R.P. Hirt. 1997. Anaerobic eukaryote evolution: hydrogenosomes as biochemically modified mitochondria? TREE 12: 437–441.Google Scholar
  17. Fast, N.M., A.J. Roger, C.A. Richardson and W. F. Doolittle. 1998. U2 and U6 snRNA genes in the microsporidian. Nucleic Acids Research 26: 3202–3207.PubMedCrossRefGoogle Scholar
  18. —, J.M. Logsdon, and W.F. Doolittle. 1999. Phylogenetic analysis of the TATA box binding protein (TBP) gene from Nosema locustae: Evidence for a Microsporidia-Fungi relationship and splicosomal intron loss. Molecular Biolology Evolution 6: 1415–1419.Google Scholar
  19. Fast, N. M., and P. J. Keeling. 2001. Alpha and beta subunits of pyruvate dehydrogenase E1 from the microsporidian Nosema locustae: mitochondrion-derived carbon metabolism in microsporidia. Molecular and Biochemical Parasitology. 117: 201–209.PubMedCrossRefGoogle Scholar
  20. Felsenstein, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology 27: 401–410.CrossRefGoogle Scholar
  21. —. 1988. Phylogenies from molecular sequences: inference and reliability. Annual Review of Genetics 22: 521–65.PubMedCrossRefGoogle Scholar
  22. Flegel, TW and T.A. Paharawipas. 1995. A proposal for typical eukaryotic meiosis in microsporidians. Canadian Journal of Microbiology 41: 1–11.CrossRefGoogle Scholar
  23. Germot, A., H. Philippe, and H. LeGuyader. 1996. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggest a very early mitochondrial endosymbiosis in eukaryotes. Proceedings of the National Academy of Sciences USA 93: 14614–14617.CrossRefGoogle Scholar
  24. —, —, and —. 1997. Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70 in Nosema locustae. Molecular and Biochemical Parasitology 87:159–168.Google Scholar
  25. Hashimoto, T., and M. Hasegawa. 1996. Origin and early evolution of eukaryotes inferred from the amino acid sequences of translation elongation factors 1α/Tu and 2/G. Advances in Biophysics 32: 73–120.PubMedCrossRefGoogle Scholar
  26. —, L.B. Sanches T. Shirakura, M. Muller, and M. Hasegawa. 1998. Secondary absence of mitochondria in Giardia lamblia and Trichomonas vaginalis revealed by valyl-tRNA synthetase phylogeny. Proceedings of the National Academy of Sciences USA 95: 6860–6865.CrossRefGoogle Scholar
  27. Hausemann S, C.P. Vivares, and S. Shuman. 2002. Characterization of the mRNA capping apparatus of the microsporidian parasite Encephalitozoon cuniculi. Journal of Biological Sciences 277: 96–102.Google Scholar
  28. Hirt, R.P., B. Healy, C.R. Vossbrinck, E.U. Canning, and T.M. Embley. 1997. A mitochondrial HSP70 orthologue in Vairimorpha necatrix: Molecular evidence that microsporidia once contained mitochondria. Current Biology 7: 995–998.PubMedCrossRefGoogle Scholar
  29. —, J.M. Logsdon, B. Healy, M.W. Dorey, W.F. Doolittle, and T.M. Embley. 1999. Microsporidida are related to Fungi: Evidence from the largest subunit of RNA polymerase II and other proteins. Proceedings of the National Academy of Sciences USA 96: 580–585.CrossRefGoogle Scholar
  30. Horner, D.S., R.P. Hirt, S. Kilvington, D. Lloyd, and T.M. Embley. 1996. Molecular data suggest an early acquisition of the mitochondrion endosymbiont. Proceedings Royal Society London B Biolologic Science 263: 1053–1059.CrossRefGoogle Scholar
  31. Huger, A. 1960. Electron microscope study on the cytology of a microsporidian spore by means of ultrathin sectioning. Journal of Insect Pathology 2: 84–105.Google Scholar
  32. Issi, I. V. 1986. Microsporidia as a phylum of parasitic protozoa. Academy of Science U.S.S.R. (Leningrad), 10: 6–136.Google Scholar
  33. Kamiashi, T., T. Hashimoto, Y. Nakamura, F. Nakamura, S. Murata, N. Okada, D. Okamoto, M. Shimizu and M. Hasegawa. 1996a. Protein phylogeny of translation elongation factor EF-1 alpha suggests microsporidians are extremely ancient eukaryotes. Journal of Molecular Evolution 42:257–263.CrossRefGoogle Scholar
  34. —, —, —, Y. Masuda, F. Nakamura, K. Okamoto, M. Shimizu, and M. Hasegawa. 1996b. Complete nucleotide sequence of the genes encoding translation elongation factors and 2 from a microsporidian parasite, Glugea plecoglossi: Implications for the deepest branching of eukaryotes. Journal of Biochemistry 120: 1095–1103.PubMedGoogle Scholar
  35. Katinka, M. D., S. Duprat, E. Cornillot, G. Metenier, F. Thomarat, G. Prensier, V. Barbe, E. Peyretaillade, P. Brottier, P. Wincker, F. Delbac, H. El Alaoui, P. Peyret, W. Saurin, M. Gouy, J. Weissenback, and C.P. Vivares, 2001. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414: 450–453.PubMedCrossRefGoogle Scholar
  36. Keeling P.J., and W. F. Doolittle, 1996. Alpha-Tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. Molecular Biology and Evolution 13: 1297–1305.PubMedGoogle Scholar
  37. — and G.I. McFadden. 1998. Origins of microsporidia. Trends in Microbiology 6: 19–23.PubMedCrossRefGoogle Scholar
  38. —, M. A. Luker, and J. D. Palmer. 2000. Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi. Molecular Biology and Evolution 17: 23–31.PubMedGoogle Scholar
  39. —, and N. M. Fast. 2002. Microsporidia: biology and evolution of highly reduced intracellular parasites. Annual Review of Microbiology 56: 93–116.PubMedCrossRefGoogle Scholar
  40. —. 2003. Congruent evidence from α-tubulin and β- tubulin gene phylogenies for a sygomycete origin of microsporidia. Fungal Genetics and Biology 38: 298–309.PubMedCrossRefGoogle Scholar
  41. Kent, M.L., L. Margolis, and J.O. Corliss. 1994. The demise of a class of protists: taxonomic and nomenclatural revisions proposed for the protist phylum Myxozoa Grassé, 1970. Canadian Journal of Zoology 72: 932–937.Google Scholar
  42. Krieg, A. 1955. Ueber Infektionskrankheiten bei Engerlingen von Melolontha sp. unter besonderer Berucksichtigung einer Mikrosporidien-Erkrankung. Zentralblatt fur Bakteriologie Parasitenkunde, Infektionskrankheiten und Hygiene. II Abt 108: 533–538.Google Scholar
  43. Kudo, R.R., and E.W. Daniels. 1963. An electron microscope study of the spore of a Microsporidian, Thelohania californica. Journal of Protozoology 10: 112–120.PubMedGoogle Scholar
  44. Larsson, J. I. R. 1986. Ultrastructure, function, and classification of microsporidia. Progress in Protistology 1: 325–390.Google Scholar
  45. Larsson, J.I.R. 1988. Identification of microsporidian genera (Protozoa, Microspora)— a guide with comments on taxonomy. Archiv fur Protistenkunde 136: 1–37.Google Scholar
  46. Leipe, D.D., J. H. Gunderson, T.A. Nerad, and M.L. Sogin. 1993. Small subunit ribosomal RNA of Hexamita inflata and the quest for the first branch in the eukaryotic tree. Molecular and Biochemical Parasitology 59: 41–48PubMedCrossRefGoogle Scholar
  47. Levine, N.D., J.O. Corliss, F.E. Cox, G. Deroux, J. Grain, B.M. Honigberg, G.F. Leedale, A.R. Loeblich 3d, J. Lom, D. Lynn, EG Merinfeld, F.C. Page, G. Poljansky, V. Sprague, J. Vavra, and F.G. Wallace. 1980. A newly revised classification of the protozoa. Journal of Protozoology 27: 37–58.PubMedGoogle Scholar
  48. Lom, J., and J. Vavra. 1961. Niektore Wyniki Baden Nad Ultrastruktura Spor Posozyta Ryb Plistophora hyphessobrycornis (Microsporidia). Wiadomosci parazytologiczne 7: 828–832.PubMedGoogle Scholar
  49. —, and —. 1962. A Proposal to the Classification within the Subphylum Cnidospora. Systematic Zoology 11: 172–175.Google Scholar
  50. Markiw, M.E., and K. Wolf. 1983. Mysoxoma cerebralis (Myxozoa: Myxosporea) etiologic agent of salmonid whirling disease requires tubificid worms (Annelida: Oligochaeta) in its life cycle. Journal of Protozoology 30: 561–564.Google Scholar
  51. Maxim, A.M., and W. Gilbert. 1977. A new method for sequencing DNA. Proceedings of the National Academy of Sciences 74: 560–564.CrossRefGoogle Scholar
  52. Peyretaillade, E., V. Broussolle, P. Peyret, G. Metenier, M. Gouy, and C.P. Vivares. 1998. Microsporidia, amitochondrial protists, possess a 70-kDa heat shock nprotein gene of mitochondrial evolutionary origin. Molecular Biology and Evolution 15: 683–689.PubMedGoogle Scholar
  53. Philippe, H. A. Germot, and D. Moreira. 2000. The new phylogeny of eukaryotes. Current Opinions in Genetic Development 10: 596–601.CrossRefGoogle Scholar
  54. Roger, A.J., C.G. Clark, and W.F. Doolittle. 1996. A possible mitochondrial gene in the earlybranching amitochondriate protist Trichomonas vaginalis. Proceedings of the National Academy of Sciences USA 93: 14618–14622.CrossRefGoogle Scholar
  55. —, S.G. Svard, J. Tovar, C.G. Clark, M.W. Smith, F.D. Gillin, and M.L. Sogin. 1998. A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proceedings of the National Academy of Sciences USA 95: 229–234.CrossRefGoogle Scholar
  56. Sanger, F., and H. Tuppy. 1951. The amino-acid sequence in the phenylalanyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates. Biochemistry 49: 463–481.Google Scholar
  57. — and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences 74: 5463–5467.CrossRefGoogle Scholar
  58. Siddall, M.E., D.S. Martin, D. Bridge, S.S. Desser, and D.K. Cone. 1995. The demise of a phylum of protists: Phylogeny of myxozoa and other parasitic cnidaria. Journal of Parasitology 81: 961–967.PubMedCrossRefGoogle Scholar
  59. Sogin, M.L., J H. Cunderson, H.J. Elwood, R. A. Alonso, and D. A. Peattie. 1989. Phylogenetic meaning of the kingdom concept: an unusual RNA from Giardia lamblia. Science 243: 75–77.PubMedCrossRefGoogle Scholar
  60. Soltys, B.J., and R.S. Gupta. 1994. Presence and cellular distribution of a 60-Kda protein related to mitochondrial HSP 60 in Giardia lamblia. Journal of Parasitology 80: 580–590.PubMedCrossRefGoogle Scholar
  61. Sprague, V., and Vavra. 1977. “Systematics of the Microsporidia.“ In: ‘Comparative Pathobiology Vol. 2’. (L.A. Bulla and T.C. Cheng. eds.) pp. 1–30. Plenum Press, New York.Google Scholar
  62. —, J.J. Becnel and E.I. Hazard. 1992. Taxonomy of the phylum microspora. Critical Review of Microbiology 18: 285–395.CrossRefGoogle Scholar
  63. —, and —. 1998. Note on the Name-Author-Date combination of the taxon Microsporidies. Balbiani, 1882, When Ranked as a Phylum. Journal of Invertebrate Pathology 71: 91–4.Google Scholar
  64. Swofford, D.L, P. J. Waddell, J. P. Huelsenbeck, P. G. Foster, P.O. Lewis, and J. S. Rogers. 2001. Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Journal of Systematic Biology 50: 525–39.CrossRefGoogle Scholar
  65. Tuzet, O., J. Maurand, A. Fize, R. Michel, and B. Fenwich. 1971. Proposition d’un nouveau cadre systematique por les genres de Microsporidies. Comptes rendus de l’Acadedmie des sciences (Paris) 272: 1268–1271.Google Scholar
  66. Williams B.A.P., R.P. Hirt, J.M. Lucocq, and T.M. Embley. 2002. A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418: 865–869.PubMedCrossRefGoogle Scholar
  67. Weill, R. 1938 L’interpretation des Cnidosporides et la valeur taxonomique de leur cnidome. Leur cycle comparé è la phase larvaire des Narcomeduses Cuninides. Travaux de la Station Zoologique de Wimereaux. 13: 727–744.Google Scholar
  68. Weiser, J. 1959. Nosema laphygmae n. sp. and the internal structure of the microsporidian spore. Journal of Insect Pathology 1: 52–59.Google Scholar
  69. —. 1977. Contribution to the classification of microsporidia. Vestnick Ceskoslovenske Spolecnost Zoologica. 41: 308–320.Google Scholar
  70. Woese, C.R., and Fox, G.E. 1977. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences USA 74: 5088–5090.CrossRefGoogle Scholar
  71. Van de Peer Y, A. Ben Ali, and A. Meyer. 2000. Microsporidia: accumulating molecular evidence that a group of amitochondriate and suspectedly primitive eukaryoties are just curious fungi. Gene 246: 1–8.PubMedCrossRefGoogle Scholar
  72. Vossbrinck, C.R., and C.R. Woese. 1986. Eukaryotic ribosomes that lack a 5.8s RNA. Nature 320: 287–288.PubMedCrossRefGoogle Scholar
  73. —, J.V. Maddox, S. Friedman, B.A. Debrunner-Vossbrinck, and C.R. Woese. 1987. Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326: 411–414PubMedCrossRefGoogle Scholar
  74. Vivares, C., C. Biderre, F. Duffieux, E. Peyretaillade, P. Peyret, G. Metenier, and M. Pages. 1996. Chromosomal localization of five genes in Encephalitozoon cuniculi (microsporidia). Journal of Eukaryotic Microbiology. 43: 97SPubMedCrossRefGoogle Scholar
  75. —, M. Gouy, F. Thomarat, and G. Metenier. 2002. Functional and evolutionary analysis of a eukaryotic parasitic genome. Current Opinions in Microbiology 5: 499–505.CrossRefGoogle Scholar
  76. Yang D., Y. Oyaizu, H. Oyaizu, G.J. Olsen, and C.R. Woese. 1985. Mitochondrial origins. Proceedings of the National Academy of Sciences U.S.A. 82: 4443–4447.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Charles R. Vossbrinck
    • 1
  • Theodore G. Andreadis
    • 1
  • Louis M. Weiss
    • 2
  1. 1.The Connecticut Agricultural Experiment StationNew HavenUSA
  2. 2.The Department of PathologyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations