Skip to main content

Intelligent Systems Technology in the Fault Diagnosis of Electronic Systems

  • Chapter
  • 2404 Accesses

Abstract

With greater system complexity, shorter product life-cycles, lower production costs, and changing technologies, the need for intelligent tools for the diagnosis of electronic systems is becoming increasingly important. Ideally, failed products must be diagnosed as an integral part of manufacturing test, and field returns must be diagnosed and repaired in a cost effective manner.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. William R. Simpson, John W. Sheppard, System Test and Diagnosis, Kluwer Academic Publishers, 1994.

    Google Scholar 

  2. M. Nicolaidis, Y. Zorian, “On-Line Testing for VLSI—A Compendium of Approaches”, Journal of Electronic Testing: Theory and Applications 12, 1998, pp. 7–20.

    Article  Google Scholar 

  3. Yoshiki Shimomura, Sadao Tanigawa, Yasushi Umeda, Tetsuo Tomiyama, “Development of Self-Maintenance Photocopiers”, AI Magazine, Winter 1995, pp. 41–53.

    Google Scholar 

  4. W. G. Fenton, T. M. McGinnity, L. P. Maguire, “Fault Diagnosis of Electronic Systems using Intelligent Techniques: A Review”, IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews, August 2001, pp. 269–281.

    Google Scholar 

  5. Billy Fenton, T. M. McGinnity, L. P. Maguire, “Whither AI in Test and Diagnosis”, Proceedings of IEEE AutoTestCon 2001, pp. 333–351.

    Google Scholar 

  6. Billy Fenton, T. M. McGinnity, L. P. Maguire, “Fault Diagnosis of Electronic Systems using Artificial Intelligence”, IEEE Instrumentation and Measurement Magazine, September 2002, pp. 16–20.

    Google Scholar 

  7. Daryl Allred, Yossi Lichtenstein, Chris Preist, Mike Bennett, Ayay Gupta, “Agatha: An Integrated Expert System to Test and Diagnose Complex Personal Computer Boards”, Proceedings Innovative Applications of Artificial Intelligence, 1991.

    Google Scholar 

  8. L. P. Maguire, W. G. Fenton, T. M. McGinnity, L. J. McDaid, “Intelligent Test and Repair of Microprocessor-based Products”, Proceedings Joint Conference on Information Systems, 1998, pp. 283–286.

    Google Scholar 

  9. Elaine Rich and Kevin Knight, Artificial Intelligence, McGraw-Hill, 1991.

    Google Scholar 

  10. B. Chandrasekaran, J. Josephson, V. Benjamins, “What are Ontologies, and Why do we Need Them?”, IEEE Intelligent Systems, Jan/Feb 1999, pp. 20–26.

    Google Scholar 

  11. George F. Luger, William A. Stubblefield, Artificial Intelligence: Structures and Strategies for Complex Problem Solving, Addison-Wesley, 1998.

    Google Scholar 

  12. Randall Davis, “Diagnostic Reasoning Based on Structure and Behavior”, Artificial Intelligence, Vol. 24, 1984, pp. 347–410.

    Article  Google Scholar 

  13. Philippe Dague, “Qualitative Reasoning: A Survey of Techniques and Applications”, AICOM, Vol. 8, No. 3–4, Sept./Dec. 1995, pp. 119–192.

    Google Scholar 

  14. B. Chandrasekaran, “Functional Representation and Causal Processes”, Advances in Computers, Vol. 38, 1994, pp. 73–143.

    Google Scholar 

  15. Aamodt, E. Plaza, “Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Variations”, AI Communications, Vol. 7:1, pp. 39–59.

    Google Scholar 

  16. Janet Kolodner, David B. Leake, “A Tutorial Introduction to Case-Based Reasoning”, In David B. Leake (Ed.)—Case Based Reasoning: Experiences, Lessons, and Future Directions, AAAI Press, 1996.

    Google Scholar 

  17. L. A. Zadeh, “Fuzzy Sets”, Information and Control, Vol. 8, 1965, pp. 338–353.

    Article  MATH  MathSciNet  Google Scholar 

  18. L. A. Zadeh, “Fuzzy Algorithms”, Information and Control, Vol. 12, 1968, pp. 94–102.

    Article  MATH  MathSciNet  Google Scholar 

  19. L. A. Zadeh, “Outline of a New Approach to the Analysisof Complex Systems and Decision Making Approach”, IEEE Transactions on Systems, Man, and Cyberneticsl, Vol. SME-3: 1, 1973, pp. 28–44.

    MATH  MathSciNet  Google Scholar 

  20. Earl Cox, The Fuzzy Systems Handbook, Academic Press, 1994.

    Google Scholar 

  21. Anil K. Jain, Jianchang Mao, “Artificial Neural Networks: A Tutorial”, IEEE Computer, March 1996, pp. 31–44.

    Google Scholar 

  22. S. Sathiya Keerthi, B. Ravindran, “A Tutorial Survey of Reinforcement Learning”, Sadhana, Vol. 19:6, December 1994, pp. 851–889.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, 1975.

    Google Scholar 

  24. Thomas Back, Ulrich Hammel, Hans-Paul Schwefel, “Evolutionary Computation: Comments on History and Current State”, IEEE Transactions on Evolutionary Computation, Vol. 1:1, 1997, pp. 3–17.

    Article  Google Scholar 

  25. Ramasamy Uthurusamy, Linda Means, Kurt Godden, Steven Lytinen, “Extracting Knowledge from Diagnostic Databases”, IEEE Expert, Dec. 1993, pp. 27–38.

    Google Scholar 

  26. Rajiv Khosla, Tharam Dillon, Engineering Intelligent Hybrid Multi-Agent Systems, Kluwer Academic Publishers, 1997.

    Google Scholar 

  27. J. G. Rowland, L. C. Jain, “Knowledge Based Systems for Instrumentation Diagnosis, System Configuration and Circuit and System Design”, Engineering Applications of Artificial Intelligence, Vol. 6, No.5, 1993, pp. 437–446.

    Article  Google Scholar 

  28. Goh Wee Leng, Lau Kim Teen, “ESPCRM—An Expert System for Personal Computer Repair and Maintenance”, Engineering Applications of Artificial Intelligence, Vol. 5, No. 2, 1992, pp. 121–133.

    Google Scholar 

  29. T. Satyanarayana, G. Subramanyam, K. V. Rama Rao, “Implementing an Expert System for Fault Diagnosis of Electronic Equipment”, Engineering Applications of Artificial Intelligence, Vol. 8, No. 3, 1995, pp. 355–364.

    Article  Google Scholar 

  30. Narendra Dev, Bart Anderson, “Pimtool: An Expert System to Troubleshoot Computer Hardware Failures”, Proceedings Innovative Applications of Artificial Intelligence, 1997.

    Google Scholar 

  31. Mohd Daud Bin Isa, Othman Bin Sidek, “PC Diagnosis and Expert System Based on Computer Response during Power On Self Test (POST)—PCDIASHOOT”, Proceedings IEEE TenCon 2000, pp. 458–463.

    Google Scholar 

  32. Suhayya Abu-Hakima, “Visualising and Understanding Diagnoses”, Canadian Artificial Intelligence, Autumn 1992, pp. 4–8.

    Google Scholar 

  33. Olivier Duffaut, Charles Castel, “A method to aid test-tree generation for hardware fault isolation in automotive electronic control systems”, Proceedings TOOLDIAG’ 93 International Conference on Fault Diagnosis, 1993, pp. 230–237.

    Google Scholar 

  34. B. D. Netten, R. A. Vingerhoeds, “Automatic Fault Tree Generation”, IFAC Intelligent Emerging Control Technologies, 1994, pp. 173–178.

    Google Scholar 

  35. Dani Juricic, Alenka Znidarsic. Dominik Fussel, “Generation of Diagnostic Trees by Means of Simplified Process Models and Machine Learning”, Engineering Applications if Artificial Intelligence, Vol. 10, No.1, 1997, pp. 15–29.

    Article  Google Scholar 

  36. Boon-Hong Alice Seng, Boon-Hou Tay,“A Practical Expert System for Colour TV Diagnostic and Repair”, Proceedings SPICIS, 1994, pp. 448–453.

    Google Scholar 

  37. Miron Abramovici, Melvin A. Breuer, Arthur D. Friedman, DigitalSystems Testing and Testable Design, IEEE Press, 1990.

    Google Scholar 

  38. William R. Simpson, John W. Sheppard, “Encapsulation and Diagnosis with Fault Dictionaries”, Proceedings IEEE AutoTestCon, 1996, pp. 441–445.

    Google Scholar 

  39. Brian Chess, Tracy Larrabee, “Creating Small Fault Dictionaries”, IEEE Trans. On Computer-Aided Design of Integrated Circuits and Systems, Vol. 18:3, 1999, pp. 346–356.

    Article  Google Scholar 

  40. Yun Peng, James A. Reggia, “A Probabilistic Causal Model for Diagnostic Problem Solving—Part 1: Integrating Symbolic Causal Inference with Numeric Probabilistic Inference”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 17:2, Mar/Apr 1987, pp. 146–162.

    Article  MATH  Google Scholar 

  41. Yun Peng, James A. Reggia, “A Probabilistic Causal Model for Diagnostic Problem Solving—Part 2: Diagnostic Strategy”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 17:3, May/Jun 1987, pp. 395–406.

    Article  MATH  Google Scholar 

  42. Harald Kirsch, “Bayesian Nets—A Tool which makes Bayes Rule useful for Diagnosis”, Proceedings International Conference on Fault Diagnosis (TOOLDIAG’ 93), 1993, pp. 748–756.

    Google Scholar 

  43. Daniel Mittelstadt, Robert Paasch, Bruce D’Ambrosio, “Application of a Bayesian Network to Integrated Circuit Tester Diagnosis”, Proceedings ASME Vol. 1, 1994, pp. 391–403.

    Google Scholar 

  44. Adnan Darwiche, “Model-based Diagnosis under Real World Constraints”, AI Magazine, Vol. 20:2, 2000, pp. 57–73.

    Google Scholar 

  45. Johan de Kleer, John Seely Brown, “Model-based Diagnosis in SOPHIE III”, In Johan de Kleer, Walter Hamscher, Luca Console (Eds.)—Readings in Model-based Diagnosis, Morgan Kaufmann, 1992.

    Google Scholar 

  46. Johan de Kleer, Brian C. Williams, “Multiple Fault Diagnosis”, Artificial Intelligence 32, 1987, pp. 163–196.

    Google Scholar 

  47. Mark Shirley, Randall Davis, “Generating Distinguishing Tests based on Hierarchical Models and Symptom Information”, Proceedings International IEEE Conference on Computer Design: VLSI in Computers, 1983.

    Google Scholar 

  48. Walter Hamscher, Randall Davis, “Diagnosing Circuits with State: An inherently underconstrained Problem”, Proceedings 4th National Conference on Artificial Intelligence, 1984, pp. 142–147.

    Google Scholar 

  49. Johan de Kleer, “Using Crude Probability Measures to Guide Diagnosis”, Artificial Intelligence 45, 1990, pp. 381–391.

    Article  Google Scholar 

  50. Johan de Kleer, Brian C. Williams, “Diagnosis with Behavioural Modes”, Proceedings IJCAI 1989, pp. 104–109.

    Google Scholar 

  51. Walter C. Hamscher, “Modeling Digital Circuits”, Artificial Intelligence 51(1–3), pp.223–271.

    Google Scholar 

  52. Don Gartner, John W Simpson, “An Experiment in Encapsulation in System Diagnosis”, Proceedings AutoTestCon, 1996, pp. 468–472.

    Google Scholar 

  53. Philippe Dague, Olivier Raiman, Philippe Deves, “Troubleshooting: When Modeling is the Trouble”, Proceedings 6th National Conference on Artificial Intelligence, 1987, pp. 600–605.

    Google Scholar 

  54. Philippe Dague, “Model-based Diagnosis of Analog Electronic Circuits”, Annals of Mathematics and Artificial Intelligence 11, 1994, pp. 439–492.

    Article  Google Scholar 

  55. Philippe Dague, Philippe Deves, Pierre Luciani, Patrick Taillibert, “Analog Systems Diagnosis”, Proceedings 9th Europeanl Conference on Artificial Intelligence, 1990, pp. 173–178.

    Google Scholar 

  56. Padraig Cunningham, “A Case Study on the Use of Model-Based Systems for Electronic Fault Diagnosis”, Artificial Intelligence in Engineering 12, 1998, pp. 283–295.

    Article  Google Scholar 

  57. M. P. Feret, J. I. Glasgow, “Case-Based Reasoning in Model-Based Diagnosis”, Applications of Artificial Intellignce Vol. 7, 1992, pp. 679–692.

    Google Scholar 

  58. Johan de Kleer, “Focusing on Probable Diagnosis”, Proceedings National Conference on Artificial Intelligence, 1991, pp. 842–848.

    Google Scholar 

  59. Randall Davis, Walter Hamscher, “Model-based Reasoning: Troubleshooting”, In Johan de Kleer, Walter Hamscher, Luca Console (Eds.)—Readings in Model-based Diagnosis, Morgan Kaufmann, 1992.

    Google Scholar 

  60. O. Dressler, P. Struss, “The Consistency-based Approach to Automated Diagnosis of Devices”, In G. Brewka (ed.)—Principles of Knowledge Representation, CSLI Publications, 1996, pp. 267–311.

    Google Scholar 

  61. William R. Simpson, John W. Sheppard, “Managing Conflict in System Diagnosis”, IEEE Computer, March 1998.

    Google Scholar 

  62. William R. Simpson, John W. Sheppard, “System Complexity and Integrated Diagnosis”, IEEE Design and Test of Computers, September 1991, pp. 16–30.

    Google Scholar 

  63. Chris Preist, “Deploying a Model-Based Diagnostic System in the Manufacturing Test Environment”, HP Technical Report HPL-97-22, 1997.

    Google Scholar 

  64. Janet Kolodner, Case-Based Reasoning, Morgan-Kaufmann Publishers, 1993.

    Google Scholar 

  65. H. Sugimatsu, S. Horu, A. Sawada, K. Azuma, “A CBR Application: Service Productivity Improvement by Sharing Experience” Proceedings IEEE Symposium on Emerging Technologies and Factory Automation, 1994, pp. 132–141.

    Google Scholar 

  66. Padraig Cunningham, Barry Smyth, Andrea Bonzano, “An Incremental Retrieval Mechanism for Case-Based Electronic Fault Diagnosis”, Knowledge-Based Systems 11, 1998, pp. 239–248.

    Article  Google Scholar 

  67. Anantaram Balakrishnan, Thilo Semmelbauer, “Circuit Diagnosis Support System for Electronic Assembly Operations”, Decision Support Systems 25, 1999, pp. 251–269.

    Article  Google Scholar 

  68. David McSherry “Interactive Case-Based Reasoning in Sequential Diagnosis”, Applied Intelligence 14, 2001, pp. 65–76.

    Article  MATH  Google Scholar 

  69. John W. Sheppard, “Explanation-Based Learning with Diagnostic Models”, Proceedings IEEE AutoTestCon Conference, 1992, pp. 159–166.

    Google Scholar 

  70. R. Isermann, “On Fuzzy Logic Applications for Automatic Control, Supervision, and Fault Diagnosis”, IEEE Systems, Man, and Cybernetics, Vol. 28:2, March 1998, pp. 221–235.

    Article  Google Scholar 

  71. Paul M. Frank, Birgit Koppen-Seliger, “New Developments using AI in Fault Diagnosis”, Engineering Applications of Artificial Intelligence, Vol. 10:1, 1997, pp. 3–14.

    Article  MathSciNet  Google Scholar 

  72. F. Mohammed, M. Marzouki, M. H. Touati, “FLAMES: A Fuzzy Logic ATMS and Model-based Expert System for Analog Diagnosis”, Proceedings European Design and Test Confernece, 1996, pp. 259–263.

    Google Scholar 

  73. F. Mohammed, M. Marzouki, “Test and Diagnosis of Analog Circuits: When Fuzziness can Lead to Accuracy”, Journal of Electronic Testing 9, 1996, pp. 203–216.

    Article  Google Scholar 

  74. Corinne Bos-Plachez, “A Possibilistic ATMS Contribution to Diagnose Analog Electronic Circuits”, International Journal of Intelligent Systems, Vol. 12, 1997, pp. 849–864.

    Article  Google Scholar 

  75. D. Dubois, H. Prade, “An Introduction to Possibilistic and Fuzzy Logics”, In P. Smets, E. H. Mamdani, D. Dubois, H. Prade (Eds.)—Non-Standard Logics for Automated Reasoning, Academic Press, 1988, pp. 287–326.

    Google Scholar 

  76. John H. Murphy, Brenda J. Kagle, “Neural Network Recognition of Electronic Malfunctions”, Journal of Intelligent Manufacturing, 1992, pp. 205–216.

    Google Scholar 

  77. A. A. AL-Jumah, T. Arslan, “Artificial Neural Network Based Multiple Fault Diagnosis in Digital Circuits”, Proceedings ICCAS’ 98, Vol. 2, 1998, pp. 304–307.

    Google Scholar 

  78. K. A. E. Totton, P. R. Limb, “Experience in Using Neural Networks for Electronic Diagnosis”, Proceedings 2nd International Conference in Artificial Neural Networks, 1991, pp. 115–118.

    Google Scholar 

  79. Y. Maidon, B. W. Jervis, N. Dutton, S. Lesage, “Diagnosis of multifaults in analogue circuits using multilayer perceptrons”, IEE Proc. Circuits Devices Syst., Vol. 144:3, June 1997, pp. 149–154.

    Article  Google Scholar 

  80. Oleg Jakubowicz, Sridhar Ramanujam, “A Neural Network Model for the Fault Diagnosis of Digital Circuits”, Proceedings International Conference on Neural Networks, Vol. 2, 1989, pp. 611–614.

    Google Scholar 

  81. Paul M. Frank, Birgit Koppen-Seliger, “Fault Detection and Isolation in Technical Processes with Neural Networks”, Proceedings 34th Conference on Decision and Control, 1995, pp. 2414–2419.

    Google Scholar 

  82. S. G. Tzafestas, P. J. Dalianis, “Fault Diagnosis in Complex Systems using Artificial Neural Networks”, Proceedings 3rd IEEE Conference on Control Applications, 1994, pp. 877–882.

    Google Scholar 

  83. Moshe Ben-Bassat, Israel Beniaminy, David Joseph, “Combining Model-Based and Case-Based Expert Systems”. In John W, Sheppard, William R. Simpson (Eds.)—Research Perspectives andCaseStudies in System Test and Diagnosis, Kluwer Academic Publishers, 1998.

    Google Scholar 

  84. John W. Sheppard, “Inducing Diagnostic Inference Models from Case Data”. In John W, Sheppard, William R. Simpson (Eds.)—Research Perspectives and Case Studies in System Test and Diagnosis, Kluwer Academic Publishers, 1998.

    Google Scholar 

  85. Timothy M. Bearse, Michael L. Lynch, “Fault Hypothesis Computations Using Fuzzy Logic”. In John W, Sheppard, William R. Simpson (Eds.)—Research Perspectives and Case Studies in System Test and Diagnosis, Kluwer Academic Publishers, 1998.

    Google Scholar 

  86. J. H. Lim, H. C. L ui, A. H. Tan, H. H. The, “INSIDE: A Connectionist-Based Diagnostic Expert System that Learns Incrementally”, Proceedings International Joint Conference on Neural Networks, Vol. 2, 1991, pp. 1693–1698.

    Google Scholar 

  87. Zhi-Qiang Liu, Francis Yan, “Case-Based Diagnostic System using Fuzzy Neural Network”, Proceedings IEEE Conference on Neural Networks, Vol. 6, 1995, pp. 3107–3112.

    Google Scholar 

  88. S. C. Hui, A. C. M. Fong, G. Jha, “A web-based intelligent fault diagnosis system for customer service support”, Engineering Applications ofArtificial Intelligence 14, pp. 537–548.

    Google Scholar 

  89. Benjamin Han, Sie-Jue Lee, Hsin-Tai Yang, “A Model-based Diagnosis System for Identifying Faulty Components in Digital Circuits”, Applied Intelligence 10, 1999, pp. 37–52.

    Article  Google Scholar 

  90. Jack Taylor, “A Standard for Test and Diagnosis”. In John W, Sheppard, William R. Simpson (Eds.) —Research Perspectives and Case Studies in System Test and Diagnosis, Kluwer Academic Publishers, 1998.

    Google Scholar 

  91. Michael R. Genesereth, “The Use of design Descriptions in Automated Diagnosis”, Artificial Intelligence 24, 1984, pp. 411–436.

    Article  Google Scholar 

  92. Johan de Kleer, Oliver Raiman, “Trading Off the Costs of Inference vs. Probing in Diagnosis”, Proceedings IJCAI, 1995, pp. 1736–1741.

    Google Scholar 

  93. D. Sauter, G. Dubois, E. Levrat, J. Bremont, “Fault Diagnosis in Systems using Fuzzy Logic”, Proceedings 1st European Congress on Fuzzy and Intelligent Technologies, 1993, pp. 781–788.

    Google Scholar 

  94. William R. Simpson, John W. Sheppard, “An Intelligent Approach to Automatic Test Equipment”, Proceedings International Test Conference, 1991, pp. 419–425.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fenton, B., McGinnity, T.M., Maguire, L.P. (2005). Intelligent Systems Technology in the Fault Diagnosis of Electronic Systems. In: Leondes, C.T. (eds) Intelligent Knowledge-Based Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4020-7829-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-7829-3_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7746-3

  • Online ISBN: 978-1-4020-7829-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics