Intelligent Patient Monitoring in the Intensive Care Unit and the Operating Room

  • Richard W. Jones


Patient monitoring in environments such as the intensive care unit (ICU) and the operating room (OR) is an extremely complex process involving clinicians, nurses and a huge amount of information ranging from clinical observations and patient data from bedside monitors to laboratory results. This can place excessive demands on the cognitive skills of the clinician. Failure to recognise that there is a problem or to identify it could result in discomfort, disability or even death for the patient.


Fuzzy Logic Bayesian Network Mean Arterial Blood Pressure Smart Sensor Esophageal Intubation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Uckun, Intelligent systems in patient monitoring and therapy management, International Journal of Clinical Monitoring and Computing, 11, 241–253, 1994.CrossRefGoogle Scholar
  2. [2]
    F. A. Mora, G. Passariello, G. Carrault and J. Le Pichon, Intelligent Patient Monitoring and Management Systems: A Review, IEEE Engineering in Medicine and Biology, 12,23–33, 1993.CrossRefGoogle Scholar
  3. [3]
    B. M. Dawant, Knowledge-Based Systems for Intelligent Patient Monitoring and Management in Critical Care Environments, in the Biomedical Handbook, edited by J. D. Bronzino, CRC Press, 2747–2756, 1995.Google Scholar
  4. [4]
    B. M. Dawant, S. Uckun, E. J. Manders and D. P Lindstrom, The SIMON Project: Model-based signal acquisition, analysis, and interpretation in intelligent patient monitoring, IEEE Engineering in Medicine and Biology, 12, 1993.Google Scholar
  5. [5]
    J. J. van der Aa, Intelligent alarms in anaesthesia: a real time expert system application. Ph.D. Dissertation, Technische Universiteit Eindhoven, The Netherlands, 1990.Google Scholar
  6. [6]
    D. R. Westenskow, J. A. Orr, F. H. Simon and H-J., Bender, Intelligent alarms reduce anesthesiologist’s response time to critical faults, Anesthesiology, 77, 1074–1079, 1992.CrossRefGoogle Scholar
  7. [7]
    W. J. Long, Medical informatics: reasoning methods, Artificial Intelligence in Medicine, 23(1), 71–87, August 2001.CrossRefGoogle Scholar
  8. [8]
    R. Silipo, R. Vergassola, W. Zong and M. R. Berthold, Knowledge-based and Data-driven Models in Arrhythmia Fuzzy Classification, Methods of Information in Medicine, 40(5), 397–402, 2001.Google Scholar
  9. [9]
    C. Robert, P. Karasinski, C. D. Arreto and J. F. Gaudy, Monitoring anesthesia using neural networks: a survey,Journal of Clinical Monitoring and Computing, 17, 259–267, 2002.CrossRefGoogle Scholar
  10. [10]
    R. C. Watt, E. S. Maslana and K. C. Mylrea, Alarms and Anesthesia: Challenges in the design of Intelligent Systems for Patient Monitoring, IEEE Engineering in Medicine and Biology, 34–41, Dec. 1993Google Scholar
  11. [11]
    B. Seroussi, V. Morice, F. Dreyfus and J. F. Boisvieux, Control theory as a conceptual framework for intensive care monitoring, Artificial Intelligence in Medicine, 7(2),155–177,1995.CrossRefGoogle Scholar
  12. [12]
    B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood Cliffs, NJ, Prentice Hall, 1979.Google Scholar
  13. [13]
    C. E. Hope, C. D. Lewis, I. R. Perry and A. Gamble, Computed trend analysis in automated patient monitoring systems, British Journal of Anaesthesia, 45, 440–449, 1973.CrossRefGoogle Scholar
  14. [14]
    I. J. Haimowitz, Intelligent Diagnostic Monitoring using Trend Templates, Proceedings of the 18th Annual Symposium on Computer Applications in Medical Care, Washington DC, 704–708, 1994.Google Scholar
  15. [15]
    R. K. Avent and J. D. Charlton, A critical review of trend-detection methodologies for Biomedical monitoring systems. Critical Reviews in Biomedical Engineering, 17(6),621–659,1990.Google Scholar
  16. [16]
    M. Frize, F. G. Solven, M. Stevenson, B. Nickerson, T. Buskard and K. Taylor, Computer-assisted decision support systemsfor patient management in an intensive care unit, Medinfo, 8 pt 2, 1009–1012, 1995.Google Scholar
  17. [17]
    P C. W Beatty, Preliminary survey into clinical attitudes to computer based decision support systems, British Journal of Anaesthesia, 79, 140P–141P 1997.Google Scholar
  18. [18]
    F. Steimann, The interpretation of time-varying data with DiaMon-1. Artificial Intelligence in Medicine, 8, 343–357, 1996.Google Scholar
  19. [19]
    I. J. Haimowitz and I. S. Kohane, Automated trend detection with multiple temporal hypotheses, Proceedings of the 13th Int. Joint Conf. On Artificial Intelligence, Chambery, France, 146–151, 1993.Google Scholar
  20. [20]
    G. J. Klir and T. A. Folger, Fuzzy Sets, Uncertainty, and Information, Englewood Cliffs, New York, Prentice Hall, 1988.MATHGoogle Scholar
  21. [21]
    F. Steimann, M. Hayde, B. Panzenbock, K.-P. Adlassing and A. Pollak, Fuzzy support for serodiagnosis: the ONSET program. IEEE Eng Med Bio, 705–709, Nov/Dec 1994.Google Scholar
  22. [22]
    R. W Jones, A. Lowe and M. J. Harrison, Trend recognition in clinical signals using template based methods. Proceedings 3rd Int. Workshop on Biosignal Processing, Chicago, 1999.Google Scholar
  23. [23]
    A. Lowe, R. W Jones, M.J. Harrison, Temporal pattern matching using fuzzy templates. Journal of Intelligent Information Systems, 16,27–45. 1999.CrossRefGoogle Scholar
  24. [24]
    W. J. Tompkins and J. Pan, A real time QRS detection algorithm, IEEE Transactions on Biomedical Engineering. BME-32, 3, 230–235, March 1985.Google Scholar
  25. [25]
    A. Kyrkos, E. A. Giakoumakis and G. Carayannis, QRS detection through time recursive prediction techniques, Signal Processing, 15, 429–436, 1988.Google Scholar
  26. [26]
    J. S. Sahambi, S. N. Tandon and R. K. P. Bhatt, Using Wavelet Transforms for ECG Characterization: An On-line Digital Processing System, IEEE Engineering in Medicine and Biology, 77–83, Jan/Feb 1997Google Scholar
  27. [27]
    M. Unser and A. Aldroubi, A review of wavelets in biomedical applications, Proceedings of the IEEE, 84(4), 626–638, April 1996.Google Scholar
  28. [28]
    K. Chui, An Introduction to Wavelets, Academic Press, Inc. 1992.Google Scholar
  29. [29]
    L. Khadra, H. Dickhaus and A. Lipp, Representations of ECG-late potentials in the time frequency plane, Journal of Medical Engineering and Technology, 17(6), 228–231, 1993.CrossRefGoogle Scholar
  30. [30]
    N. V. Thakor, J. G. Webster and W. J. Tompkins, Estimation of QRS Complex Power Spectra for Design of a QRS Filter, IEEE Transactions on Biomedical Eng, BME-31, 11, 702–705, 1984.CrossRefGoogle Scholar
  31. [31]
    T. S. Vitez, R. Wada and A. Macario, Fuzzy logic: theory and medical applications, Journal of Cardiothoracic and Vascular Anesthesia, 10(6), 800–808, 1996.CrossRefGoogle Scholar
  32. [32]
    U. Thole, H. J. Zimmerman and P. Zysno, On the suitability of minimum and product operators for the intersection of fuzzy sets, Fuzzy Sets and Systems 2, 167–180, 1979.MATHCrossRefGoogle Scholar
  33. [33]
    American Society of Anesthesiologists, New Classification of physical status. Journal of Anesthesiology, 24(11), 1963.Google Scholar
  34. [34]
    P. M. A. de Graaf, G. C. van den Eijkel, H. J. L. M. Vullings and B. A. J. M. de Mol, A decisiondriven design of a decision support system in anesthesia, IEEE Transactions on Circuits and Systems, 11, 141–153, 1997.Google Scholar
  35. [35]
    G. C. van den Eijkel, J. van der Lubbe and E. Backer. Fuzzy incremental learning of expert rules for a knowledge-based anesthesia monitor. In Proc. 4th European Congress on Intelligent Techniques and Soft Computing (EUFIT), 2056-2060, Aachen, Germany, 1996.Google Scholar
  36. [36]
    K. Becker, B. Thull, H. Kasmacher-Leidinger, J. Stemmer, G. Rau, G. Klaff and H. J. Zimmerman, Design and validation of an intelligent patient monitoring and alarm system based on a fuzzy logic process model, Artificial Intelligence in Medicine, 11, 22–53, 1997.CrossRefGoogle Scholar
  37. [37]
    M. J. Cordova and J. M. Goldman, Advanced clinical monitoring: similar scenario discrimination, Proceedings Medinfo, 95, 880–884, 1995.Google Scholar
  38. [38]
    M. Wolf, M. Keel, K. von Siebenthal, H. U. Bucher, K. Geering, Y. Lehareinger and P. Niederer, Improved monitoring of preterm infants by fuzzy logic, Technol Health Care, 4, 1996.Google Scholar
  39. [39]
    J. Pearl, Plausibility of diagnostic hypothesis, Proceedings of AAAI-86; Fifth National Conference on AI, Philadelphia, 140–145, 1986.Google Scholar
  40. [40]
    K.-P. Adlassnig and G. Korlarz, CARDIAG-2: computer-assisted medical diagnosis using fuzzy subsets, in: M. M. Gupta, E. Sanchez (Eds.), Approximate Reasoning in Decision Analysis, North-Holland, New York, 1982.Google Scholar
  41. [41]
    G. A. Shafer, Mathematical Theory of Evidence, Princeton University Press, Princeton, 1976.MATHGoogle Scholar
  42. [42]
    E. H. Shortcliffe, Computer-Based Medical Consultation: MYCIN, Elsevier, New York, 1976.Google Scholar
  43. [43]
    E. Horvitz, D. Heckerman and C. P Langlotz, A framework for comparing formalisms for plausible reasoning, Proceedings of the National Conference on Artificial Intelligence, 210–214, 1986.Google Scholar
  44. [44]
    P Smets, Medical diagnosis: fuzzy setsand degress of belief, Fuzzy Setsand Systems, 5, 259–266, 1981.MATHMathSciNetCrossRefGoogle Scholar
  45. [45]
    L. Kuncheva, An aggregation of pro and con evidence for medical decision support systems, Computers in Biology and Medicine, 23, 417–424, 1993.CrossRefGoogle Scholar
  46. [46]
    R. W. Jones, A. Lowe and M. J. Harrison, A framework for intelligent medical diagnosis using the theory of evidence, Knowledge-based Systems, 15,77–84,2002.CrossRefGoogle Scholar
  47. [47]
    E. E. Oblow and O-Theory: a hybrid uncertainty theory, International Journal of General Systems, 13, 95–106, 1987.MathSciNetCrossRefGoogle Scholar
  48. [48]
    A. Lowe, M. J. Harrison and R. W Jones, Diagnostic monitoring in anaesthesia using fuzzy trend templates for matching temporal patterns, Artificial Intelligence in Medicine, 16, 183–199, 1999.CrossRefGoogle Scholar
  49. [49]
    D. J. Spiegelhalter, J. P. Myles, D. R. Jones and K. R. Abrams, Methods in health service research. An introduction to bayesian methods in health technology assessment. British Medical Journal, 319, 508–512, 1999.Google Scholar
  50. [50]
    J. H. Kim and J. Pearl, A computational model for causal and diagnostic reasoning in inference systems. IJCAI-83, 190–193, 1983.Google Scholar
  51. [51]
    J. Pearl, Fusion, propagation, and structuring in Bayesian networks. Artificial Intelligence, 29, 241–288, 1986.MATHMathSciNetCrossRefGoogle Scholar
  52. [52]
    S. L. Lauritzen and D. J. Spiegelhalter, Local computations with probabilities on graphical structures and their application to expert systems, Journal Royal Statistical Society, B50, 157–224, 1988.MATHMathSciNetGoogle Scholar
  53. [53]
    I. A. Beinlich, H. J. Suermondt, R. M. Chavez and G. F. Cooper, The ALARM monitoring system: a case study with two probabilistic inference techniques for belief networks, Proceedings of AIME, Springer-Verlag, Berlin, 247–256, 1989.Google Scholar
  54. [54]
    C. Larizza, A. Moglia and M. Stefanelli, M-HTP: a system for monitoring heart transplant patients. Artificial Intelligence in Medicine, 4, 111–126, 1992.CrossRefGoogle Scholar
  55. [55]
    U. Bothner, S. E. Milne, G. N. C. Kenny, M. Georgieff and S. Schraag, Bayesian probabilistic network modeling of remifentanil and propofol interaction on wakeup time after closed-loop controlled anesthesia, Journal of Clinical Monitoring and Computing and Computing, 17, 31–36, 2002.CrossRefGoogle Scholar
  56. [56]
    C. Yu, R. J. Roy, H. Kaufman and B. W. Bequette, Multiple-model adaptive predictive control of mean arterial pressure and cardiac output, IEEE Transactions on Biomedical Engineering, 39(8), 765–778, 1992.CrossRefGoogle Scholar
  57. [57]
    R. R. Rao, B. Aufderheide and B. W. Bequette, Multiple Model Predictive Control of Hemodynamic Variables: An experimental study, Proceedings of the American Control Conference, 1253–1257, 1999.Google Scholar
  58. [58]
    Y. Maki and K. A. Loparo, A neural-network approach to fault detection and diagnosis in industrial processes, IEEE Transactions on Control Systems Technology, 5(6), 529–541, Nov. 1997.CrossRefGoogle Scholar
  59. [59]
    R. Li, J. H. Olson and D. L. Chester, Dynamic fault detection and diagnosis using neural networks, Proceedings 5th IEEE Symposium Intelligent Control, 1169–1174, 1990.Google Scholar
  60. [60]
    M. J. Tobin, State of the art. Respiratory monitoring in the intensive care unit, Amer Rev Respir Dis, 138, 1625–1642, 1988.Google Scholar
  61. [61]
    L. M. Fagan, E. H. Shortliffe and B. G. Buchanan, Computer-based medical decision making: from MYCIN to VM. In W J. Clancey, E. H. Shortliffe (Eds), Readings in Medical Artificial Intelligence: The first decade, 241–255, Reading, Mass, Addison-Wesley.Google Scholar
  62. [62]
    D. F. Sittig, N. L. Pace and R. M. Gardner, Implementation of a computerized patient advice system using HELP clinical information system. Comput Biomed Res, 22, 474, 1989.CrossRefGoogle Scholar
  63. [63]
    S. Henderson, R. O. Crapo and C. J. Wallace, Performance of computerized protocols for the management of arterial oxygenation in an intensive care unit, International Journal of Clinical Monitoring and Computing, 8, 271, 1992.CrossRefGoogle Scholar
  64. [64]
    R. Summers, E. R. Carson and D. G. Cramp, Ventilator management: the role of knowledge-based technology, IEEE Engineering in Medicine and Biology, 12(4), 50, 1993.CrossRefGoogle Scholar
  65. [65]
    D. A. Tong, Weaning patients from mechanical ventilation: a knowledge-based system approach, In: Proc 14th Annual Symp Comput. Appl Med Care. Washington DC, 79–85, 1990.Google Scholar
  66. [66]
    V. Moret-Bonillo, A. Alonso-Betanzos, E. G. Martin, M. C. Canosa and B. G. Berdinas, The PATRICIA Project. A semantic-based methodology for intelligent monitoring in the ICU, IEEE Engineering in Medicine and Biology, 59–67, Dec. 1993.Google Scholar
  67. [67]
    M. Dojat, L. Brochard, F. Lemaire and A. Harf, A knowledge-based system for assisted ventilation of patients in intensive-care units. International Journal of Clinical Monitoring and Computing, 9, 239–250, 1992.CrossRefGoogle Scholar
  68. [68]
    J. H. Strickland Jr and J. H. Hasson, A computer-controlled ventilator weaning system. Chest, 100, 1096–1099, 1991.CrossRefGoogle Scholar
  69. [69]
    P. Siregar, J. L. Coatrieux and P. Mabo, How can deep knowledge be used in CCU monitoring? IEEE Engineering in Medicine and Biology, 92–99, Dec. 1993.Google Scholar
  70. [70]
    B. Hayes-Roth, R. Washington, D. Ash, R. Hewett, A. Collinot, A. Vina, and A. Seiver, Guardian: A prototype intelligent agent for intensive-care monitoring, Artificial Intelligence in Medicine, 4(2), 165–185, 1992.CrossRefGoogle Scholar
  71. [71]
    J. E. Larsson and B. Hayes-Roth, Guardian: An intelligent autonomous agent for medical monitoring and diagnosis, IEEE Intelligent Systems, 13(1), 58–66, 1998.CrossRefGoogle Scholar
  72. [72]
    Y. Peng and J. A. Reggia, Abductive inference models for diagnostic problem solving, Springer-Verlag, New York, 1990.MATHGoogle Scholar
  73. [73]
    M. Lind, An architecture for real-time MFM diagnosis, Technical Report, Institute of Automatic Control Systems, Technical University of Denmark, Lyngby, Denmark, 1990.Google Scholar
  74. [74]
    N. Lavrac, I. Bratko and I. Mozetic, KARDIO-E: An expert system for electrocardiographic diagnosis of cardiac arrhythmias. Expert Syst, 2(1), 46, 1985.CrossRefGoogle Scholar
  75. [75]
    P. Siregar and F. Le Moulec, Modeling the heart’s electrical activity: a qualitative-analog approach. Proc IEEE EMBS’91, 1052–1053, Orlando, FL, 1991.Google Scholar
  76. [76]
    R. Silipo and C. Marchesi, Artificial Neural Networks for automatic ECG analysis, IEEE Transactions on Signal Processing, 46(5), 1417–1425, 1998.CrossRefGoogle Scholar
  77. [78]
    M. Stefanelli and R. Bellazzi, A general architecture for medical expert systems (GAMES). In: J. Noorthovan van Goor, J. P. Christensen, eds AIM GAMES Advances in medical informatics: lOS Press 1992.Google Scholar
  78. [79]
    M. van Gils, H. Jansen, K. Nieminen, R. Summers and P. R. Weller, Using artificial neural networks for classifying ICU patient states. A comparison between physician methods and a model-based approach, IEEE Engineering in Medicine and Biology, 41–47, Nov/Dec 1997.Google Scholar
  79. [80]
    T. Kohonen, Self-Organisation and Associative Memory. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 3rd Ed. 1989.Google Scholar
  80. [81]
    W. Zong and D. Jiang, Automated ECG rhythm analysis using fuzzy reasoning, Proceedings ofComputer in Cardiology, 69–72, 1998.Google Scholar
  81. [82]
    E. M. J. Koski, T. Sukuvaara, A. Makivirta and A. Kari, A knowledge-based alarm system for monitoring cardiac operated patients—assessment of clinical performance, International Journal of Clinical Monitoring and Computing, 11, 79–83, 1994.CrossRefGoogle Scholar
  82. [83]
    E. B. Phelps and J. M. Goldman, Automated situational analysis for operating room anesthesia monitoring, Biomedical Sciences Instrumentation, 28, 111–116, 1992.Google Scholar
  83. [84]
    J. J. Forsstrom and K. J. Dallas, Artificial neural networks for decision support in clinical medicine, Annals of Medicine, 27, 509–517, 1995.CrossRefGoogle Scholar
  84. [85]
    A. Lowe, R. W. Jones and M. J. Harrison, The SENTINEL intelligent anaesthesia monitor, International ICSC Sympos On Soft Computing in Biomedicine, Rochester, New York, 1999.Google Scholar
  85. [86]
    M. A. Leon, J. Rasanen and D. Mangar, Neural Network-based detection of esophageal intubation, Anesth Analg, 78, 548–553, 1994.Google Scholar
  86. [87]
    A. Lowe, R. W Jones and M. J. Harrison, The graphical presentation of decision support information in an intelligent anaesthesia monitor, Artificial Intelligence in Medicine, 22, 173–191, 2001.CrossRefGoogle Scholar
  87. [88]
    K. Becker, G. Rau, H. Kaesmacher, M. Petermeyer, G. Kalff and H-J. Zimmermann, Fuzzy logic approaches to intelligent alarms, IEEE Engineering in medicine and Biology, 710–716, Nov/Dec 1994.Google Scholar
  88. [89]
    K. H. Andersen and A. Hald, Assessing the position of the tracheal tube: the reliability of different methods, Anaesthesia, 44, 984–985, 1989.CrossRefGoogle Scholar
  89. [90]
    T. Uejima, Esophageal intubation, Anesth Analg, 66, 481–483, 1987.CrossRefGoogle Scholar
  90. [91]
    I. P Murray and J. H. Modell, Early detection of endotracheal tube accidents by monitoring carbon dioxide concentration in respiratory gas. Anesthesiology, 59, 344–346, 1983.CrossRefGoogle Scholar
  91. [92]
    S. T. Sum-Ping, M. P Mehta and J. M. Anderton, A comparative study of methods of detection of esophageal intubation, Anesth Analg, 69, 627–632, 1989.CrossRefGoogle Scholar
  92. [93]
    C. Thornton and J. G. Jones, Evaluating depth of anaesthesia: Review of methods, Int. Anesth Clinics, 31, 67–68, 1993.CrossRefGoogle Scholar
  93. [94]
    L. Goldmann, Information processing under general anaesthesia: A review, Journal Royal Society of Medicine, 81, 224–227, 1988.Google Scholar
  94. [95]
    R. Allen and D. Smith, Neuro-fuzzy closed-loop control of depth ofanaesthesia, Artificial Intelligence in Medicine, 21, 185–191, 2001.CrossRefGoogle Scholar
  95. [96]
    X. S. Zhang, R. J. Roy, D. Schwender and M. Daunderer, Discrimination of anesthetic states using Mid-Latency auditory evoked potential and artificial neural networks, Ann Biomed Eng, 29, 446–453, 2001.CrossRefGoogle Scholar
  96. [97]
    J. W. Huang, Y. Y. Lu, A. Nayak and R. J. Roy, Depth of anesthesia estimation and control, IEEE Transactions on Biomedical Engineering, 46(1), 71–81, 1999.CrossRefGoogle Scholar
  97. [98]
    X. S. Zhang and R. J. Roy, Derived fuzzy knowledge model for estimating the depth of anesthesia, IEEE Transactions Biomedicine in Engineering, 48(3), 312–323, 2001.CrossRefGoogle Scholar
  98. [99]
    K. Leslie, D. I. Sessler, M. Schroeder and K. Walter, Propofol blood concentration and the bispectral index predict suppression of learning during Propofollepidural anesthesia in volunteers, Anesth and Analg, 81, 1269–1274, 1995.CrossRefGoogle Scholar
  99. [100]
    H. S. Traast and C. J. Kalkman, Electroencephalographic characteristics of emergence from Propofollsufentanil total intravenous anesthesia, Anesth and Analg, 81, 366–371, 1995.CrossRefGoogle Scholar
  100. [101]
    H. Schwilden, H. Stoeckel and J. Schuttler, Closed-loop feedback control of Propofol anaesthesia by quantitative EEG analysis in human, British Journal of Anaesthesia, 62(3), 290–296, 1989.CrossRefGoogle Scholar
  101. [102]
    X. S. Zhang and R. J. Roy, Predicting movement during anesthesia by complexity analysis of electroencephalograms. Med BioI Eng & Comput, 37, 327–334, 1999.CrossRefGoogle Scholar
  102. [103]
    D. A. Linkens, M. F. Abbod, J. K. Backory and J. S. Shieh, Closed-loop control of anaesthesia using fuzzy logic. In: P J. G. Lisboa, S. Tsumoto and P. S. Szczepaniak, editors. Fuzzy systems in medicine. Berlin, Springer series Studies in Fuzziness and Soft Computing. J. Kacprzyk, editor 467–483.Google Scholar
  103. [104]
    E. K. Daily and J. Mersch, Thermodilution cardiac output using room and ice temperature injectate: Comparison with the Fick method, Heart Lung, 16, 294, 1987.Google Scholar
  104. [105]
    C. F. Starmer, P. A. McHale, F. R. Cobb and O. C. Green, field, Evaluation of several methods for computing stroke volume from central aortic pressure, Circ 4Rs, 33, 139–148, 1973.Google Scholar
  105. [106]
    K. H. Wesseling, J. R. Jansen, J. J. Settels and J. J. Schreuder, Computation of aortic flow from pressure in humans using a nonlinear three element model, J. Appll. Phys., 74(5), 2566–2573, May, 1993.Google Scholar
  106. [107]
    B. G. Min, W. Welkowitz and J. B. Kostis, Noninvasive cardiac output estimation based upon a mathematical model of the aorta: Comparison with thermo-dilution method in 13 patients, Proc. 6th New Eng Bioenf Conf, 15–19, 1978.Google Scholar
  107. [108]
    W. Welkowitz, S. Fich and J. J. Strano, Cost function analysis applied to determination of aorta parameters, Int. J Eng Sci, 10, 1081–1091, 1972.CrossRefGoogle Scholar
  108. [109]
    W. Welkowitz, Q. Cui, Y. Qi and J. B. Kostos, Noninvasive estimation of cardiac output, IEEE Transactions on Biomedical Engineering, 38(11), 1100–1105, Nov. 1991.CrossRefGoogle Scholar
  109. [110]
    W. G. Kubicek, R. P. Patterson and D. A. Witsoe, Impedance cardiography as a noninvasive method of monitoring cardiac function and other parameters of the cardiovascular system, Ann NY Acad Sci, 170, 724, 1970.CrossRefGoogle Scholar
  110. [111]
    J. F. Martin, L. B. Volfson, V. V. Kirzon-Zolin and V. G. Schukin, Application of pattern recognition and image classification techniques to determine continuous cardiac output from the arterial pressure waveform, IEEE Transactions on Biomedical Engineering, 41(10), 913–921, Oct. 1994.CrossRefGoogle Scholar
  111. [112]
    R. Babuska, L. Alic, M. S. Lourens, A. F. M. Verbraak and J. Bogaard, Estimation of respiratory parameters via fuzzy clustering, Artificial Intelligence in Medicine, 21, 91–105, 2001.CrossRefGoogle Scholar
  112. [113]
    D. A. Linkens and M. Mahouf, The Intelligent Systems in Biomedicine laboratory in the Department of Automatic Control and Systems Engineering at the University of Sheffield, UK, Artificial Intelligence in Medicine, 21, 171–176, 2001.CrossRefGoogle Scholar
  113. [114]
    K. M. Goode, D. A. Linkens, P R. Browne and J. G. Cundill, Developments of a fuzzy rule-based advisor for the maintenance of mechanically ventilated patients in ICU: a model based approach. J Biomed Eng (ABC), 10, 236–246, 1998.Google Scholar
  114. [115]
    J. Schaublin, M. Derighetti, P. Feigenwinter, S. Petersen-Felix and A. M. Zbinden, Fuzzy logic control of mechanical ventilation during anaesthesia. British Journal of Anaesthesia, 77(5), 636–641, 1996.Google Scholar
  115. [116]
    L. C. Sheppard, J. F. Shotts, N. T. Roberson, F. D. Wallace and N. T. Kouchoukos, Computer controlled infusion of vasoactive drugs in post cardiac surgical patients, 1st Annu Conf IEEE Eng Medicine BioI Soc, Denver CO, 280–284, 1979.Google Scholar
  116. [117]
    K. Behbehani and R. Cross, A controller for regulation of mean arterial blood pressure using optimum nitroprusside infusion rate, IEEE Transactions of Biomedical Engineering, 513–521, 38,1991.CrossRefGoogle Scholar
  117. [118]
    J. F. Martin, A. M. Schneider and N. T. Smith, Multiple-model adaptive control of blood pressure using sodium nitroprusside, IEEE Transactions of Biomedical Engineering, 603–611, BME-34, 1987.CrossRefGoogle Scholar
  118. [119]
    J. F. Martin, A. M. Schneider, M. L. Quinn and N. T. Smith, Improved safety and efficacy in adaptive control of arterial blood pressure through the use of a supervisor, IEEE Transactions in Biomedical Engineering, 39, 381–388, 1992.CrossRefGoogle Scholar
  119. [120]
    H. Ying, M. McEachern, D. W. Eddleman and L. C. Sheppard, Fuzzy control of mean arterial pressure in postsurgical patients with sodium nitroprusside infusion, IEEE Transactions Biomedical Engineering, 39, 1060–1070, 1992.CrossRefGoogle Scholar
  120. [121]
    W. G. He, H. Kaufman and R. Roy, Multiple-model adaptive control procedure for blood pressure control, IEEE Transactions of Biomedical Engineering, 10–19, BME-33, 1986.CrossRefGoogle Scholar
  121. [122]
    M. Mahfouf, D. A. Linkens, A. J. Asbury, W. M. Gray and J. E. Peacock, Generalised predictive control (GPC) in the operating theatre. lEE Proc Part D, 139, 404–420, 1992.Google Scholar
  122. [123]
    K. E. Kwok, S. L. Shah, B. A. Finegan and G. K. Kwong, An observational trial ofa computerized drug delivery system on two patients, IEEE Transactions on Control Systems Technology, 5(4), 385–393, July 1997.CrossRefGoogle Scholar
  123. [124]
    A. M. Zbinden, P. Feigenwinter, S. Petersen-Felix and S. Hacisalihzade, Arterial pressure control with isofluane using fuzzy logic, British Journal of Anaesthesia, 74(1), 66–72, 1995.CrossRefGoogle Scholar
  124. [125]
    W. W. Mapleson, J. N. Lunn, M. C. Blewett, M. T. Khatib and B. A. Willis, Computer assistance in the control of depth of anaesthesia, British Journal of Anaesthesia, 52, 234P, 1980.Google Scholar
  125. [126]
    P. Suppan, Feed-back monitoring in anaesthesia, IV: The indirect control of halothane administration, British Journal of Anaesthesia, 49, 141–150, 1977.CrossRefGoogle Scholar
  126. [127]
    G. F. Schils, F. J. Sasseand V. C. Rideout, Automated control of halothane administration-computer model and animal studies, Anesthesiology, 59(3), A169, 1983.Google Scholar
  127. [128]
    W. M. Gray and A. J. Asbury, Measurement and control of depth of anaesthesia in surgical patients, 3rd IMEKO Conference on Measurement in Clinical Medicine, Edinburgh, 167–172, 1986.Google Scholar
  128. [129]
    R. M. Tackley, G. T. R. Lewis, C. Prys-Roberts, R. W. Boaden, J. Dixon and J. T. Harvey, Computer controlled infusion of Propofol, British Journal of Anaesthesia, 62, 46–53, 1989.CrossRefGoogle Scholar
  129. [130]
    R. R. Miller, N. A. Awan, J. A. Joye, K. S. Maxwell, A. N. DeMaria, E. A. Amsterdam and D. T. Mason, Combined dopamine and nitroprusside therapy in congestive heart failure, Circulation, 55, 881–884, 1977.Google Scholar
  130. [131]
    D. R. Semple, J. H. Kleiman and D. C. Harrison, Combined nitroprusside-dopamine therapy in sever chronic congestive heart failure, American Journal of Cardiology, 42, 267–275, 1978.CrossRefGoogle Scholar
  131. [132]
    V. Serna, R. Roy and H. Kaufman, Adaptive control of multiple drug infusions, American Control Conference, San Francisco, 1983.Google Scholar
  132. [133]
    G. I. Voss, P. G. Katona and H. J. Chizeck, Adaptive multivariable drug delivery: Control of arterial pressure and cardiac output in anesthetized dogs, IEEE Transactions in Biomedical Engineering, BME-34, 617–623, 1987.CrossRefGoogle Scholar
  133. [134]
    J. W. Huang and R. R. Roy, Multiple-drug Hemodynamic Control using Fuzzy Decision Theory, IEEE Transactions on Biomedical Engineering, 45(2), Feb. 1998.Google Scholar
  134. [135]
    M. Mahfouf and D. A. Linkens, Generalised predictive control in bioengineering, London: Taylor & Francis, 1998.Google Scholar
  135. [136]
    E. Hutchin, J. Hollan and D. Norman, Direct manipulation interfaces. In: D. Norman, S. Draper, eds. User Centred System Design, Hillsdale, NJ: Lawerence Erlbaum, 87–124, 1986.Google Scholar
  136. [137]
    B. Shneiderman, Designing the user interface: strategies for effective human-computer interaction, Reading, MA: Addison-Wesley, 1987.Google Scholar
  137. [138]
    M. U. Farooq and W. D. Dominick, A survey offormal tools and models for developing user interfaces, Int J Man-Machine Stud, 29, 479–496, 1988.CrossRefGoogle Scholar
  138. [139]
    S. Harker, Rapid prototyping as a tool for user centred design. In: G. Salvendy ed. Cognitive Engineering in the Design of Human-Computer Interaction and Expert systems. Amsterdam: Elsevier, 365–372, 1987.Google Scholar
  139. [140]
    J. Lowgren, History, state and future of user interface management systems. SIGCHI Bull, 20(1), 32–44, 1988.CrossRefGoogle Scholar
  140. [141]
    G. Perlman, Software tools for user interface development. In: M. Helander ed. Handbook of Human Computer Interaction, Amsterdam: Elsevier, North-Holland, 819–833, 1988.Google Scholar
  141. [142]
    R. Bernotat and G. Rau, Ergonomics in medicine, In: H. Reul, D. N. Ghista and G. Rau, eds. Perspectives in Biomechanics, vol. 1, Part A. Cambridge, MA: Harwood, 381–398, 1980.Google Scholar
  142. [143]
    H. Klocke, S. Trispel, G. Rau, U. Hatzky and D. Daub, An anaesthesia information system for monitoring and record keeping during surgical anaesthesia, Journal of Clinical Monitoring, 4, 246–261, 1986.CrossRefGoogle Scholar
  143. [144]
    B. Thull, H-J. Popp and G. Rau, Man-Machine interaction in critical care settings, IEEE Engineering in Medicine and Biology, 12, 42–49, 1993.CrossRefGoogle Scholar
  144. [145]
    Th Schecke, M. Langen, H-J Popp, G. Rau, H. Kasmacher and G. Klaff, Knowledge-based decision support for patient monitoring in cardioanesthesia, International Journal of Clinical Monitoring and Computing, 9, 1–11, 1992.CrossRefGoogle Scholar
  145. [146]
    W. G. Cole and J. G. Stewart, Human performance evaluation of a metaphor graphic display for respiratory data, Methods Inform Med., 33, 390–396, 1994.Google Scholar
  146. [147]
    B. S. Gurushanthaiah, M. B. Weinger and C. E. Englund, Visual display format Affects the ability of anesthesiologists to detect acute physiologic changes, Anesthesiology, 83, 1184–1193, 1995.CrossRefGoogle Scholar
  147. [148]
    P. Michels, D. Gravenstein and D. R. Westenskow, An integrated graphic data display improves detection and identification of critical events during anesthesia, Journal Critical Monitoring, 13, 249–259, 1997.CrossRefGoogle Scholar
  148. [149]
    E. R. Tufte, Visual explanation, Cheshire, CT: Graphics Press, 1997.Google Scholar
  149. [150]
    M. Langen, and G. Rau. A development environment for the design of multimodal, colourgraphic human-computer interfaces. In: D. Diaper, ed. Human Computer Interaction-INTERACT’ 90. Amsterdam: Elsevier, 1021–1024, 1990.Google Scholar
  150. [151]
    K. Becker, H. Kaesmacher, K. Jufferrnbruch, G. Rau, G. Kalff and H. J. Zimmermann, An intelligent alarm system for decision-support in cardioanaesthesia: knowledge base and user interface. In: proceedings of the 1st European Congress on Fuzzy and Intelligent Technologies, vol. 1. Aachen, Germany, 1023–1026, 1993.Google Scholar
  151. [152]
    G. T. Blike, S. D. Surgenor and K. Whalen, A graphical object display improves anesthesiologists performance on a simulated diagnostic task, Journal of Clinical Monitoring and Computing, 15, 37–44, 1999.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • Richard W. Jones
    • 1
  1. 1.School of EngineeringUniversity of NorthumbriaNewcastle upon Tyne EnglandUK

Personalised recommendations