Skip to main content

Adaptive Zones and the Pinniped Ankle: A Three-Dimensional Quantitative Analysis of Carnivoran Tarsal Evolution

  • Chapter
Mammalian Evolutionary Morphology

Part of the book series: Vertebrate Paleobiology and Paleoanthropology Series ((VERT))

Bones are functional. Stated so abruptly, this observation is a truism, but its significance depends on the context in which it is made. In an individual animal, bones support loads, resist muscular contractions, and facilitate bodily movements. Bone form both constrains, and is shaped by, force and motion. In an environmental context, a bone’s form is compatible with its owner’s size and habits and is, thus, related indirectly to habitat and environment, although any particular bone (or, more properly, musculoskeletal configuration) can cope in diverse environments, and any substrate can be traversed by animals with different skeletal forms. Form and function are inseparable at the level of joint movements (Bock and von Wahlert, 1965), but they are only loosely correlated at the level of ecology, specifically locomotor types and habitats. The coarseness of the correlation between form and ecology come from the temporal lag of phylogenetic adaptation and the many-to-many relationship between form and habitat. Even though ecophenotypic plasticity allows bones to be modified during an individual’s lifetime, bone form is largely heritable and evolutionary change requires generations of selective genetic and epigenetic reorganization (Cock, 1966; Grüneberg, 1967; Thorpe, 1981).

In this paper, function and phylogeny were analyzed using a new geometric morphometric technique that quantitatively represents the entire three-dimensional surface of the bones. This method was used to associate variation in the two bones, including the size and curvature of occluding joint facets, with locomotor type, stance, number of digits, and body mass. Principal components analysis was used to describe the major axes of variation in the two bones, and multivariate analysis of variance was used to test functional categories for significance. Correlated transformations in the interlocking surfaces of the two bones were also explored using two-block partial least squares. Phylogenetic components of variation were assessed by mapping the three-dimensional shape of the bones onto a cladogram and projecting the results back into the principal component morphospace to visualize the patterns of homoplasy. Rates of morphological evolution in the several clades were calculated from the mapped shapes. Homoplasy was also quantitatively assessed by measuring the scaling coefficient between evolutionary divergence and time since common ancestry. The final aim of this paper was to develop criteria for assessing the whether functional adaptation is likely to confound phylogenetic signal in a dataset for the taxa being considered. A quantitative redefinition of Simpson’s adaptive zones was employed to assess the effect of adaptive convergence on phylogenetic divergence, and determine the circumstances in which associated homoplasy is likely to confound phylogeny reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acero, A., Tavera, J. J., Reyes, J., 2005. Systematics of the genus Bagre (Siluriformes: Ariidae): a morphometric approach. Cybium 29, 127–133.

    Google Scholar 

  • Alexander, R. M., 2003. Principles of Animal Locomotion. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Alroy, J., 1998. Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science 280, 731–734.

    Google Scholar 

  • Arnold, S. J., Pfrender, M. E., Jones, A. G., 2001. The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica 112–113, 9–32.

    Google Scholar 

  • Bininda-Emonds, O. R. P., Gittleman, J. L., 2000. Are pinnipeds functionally different from fissiped carnivores? The importance of phylogenetic comparative analyses. Evolution 54, 1011–1023.

    Google Scholar 

  • Bininda-Emonds, O. R. P., Gittleman, J. L., Purvis, A., 1999. Building large trees by combining phylogenetic information: a complete phylogeny of the Carnivora (Mammalia). Biological Reviews of the Cambridge Philosophical Society 74, 143–175.

    Google Scholar 

  • Bock, W. J., 1965. The role of adaptive mechanisms in the origin of higher levels of organization. Systematic Zoology 14, 272–287.

    Google Scholar 

  • Bock, W. J., von Wahlert, G., 1965. Adaptation and the form-function complex. Evolution 19, 269–299.

    Google Scholar 

  • Bookstein, F. L., 1991. Morphometric Tools for Landmark Data. Cambridge University Press, Cambridge.

    Google Scholar 

  • Bookstein, F. L., Gingerich, P. D., Kluge, A. G., 1978. Hierarchical linear modeling of the tempo and mode of evolution. Paleobiology 4, 120–134.

    Google Scholar 

  • Brown, W. M., George, M. Jr., Wilson, A. C., 1979. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences USA 76, 1967–1971.

    Google Scholar 

  • Butler, M. A., King, A. A., 2004. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. American Naturalist 164, 683–695.

    Google Scholar 

  • Caumul, R., Polly, P. D. 2005. Comparative phylogenetic and environmental components of morphological variation: skull, mandible and molar shape in marmots (Marmota, Rodentia). Evolution 59.

    Google Scholar 

  • Cheverud, J. M., 1996. Developmental integration and the evolution of pleiotropy. American Zoologist 36, 44–50.

    Google Scholar 

  • Clevedon Brown, J., Yalden, D. W., 1973. The description of mammals -2. Limbs and locomotion of terrestrial mammals. Mammal Review 3, 107–135.

    Google Scholar 

  • Cock, A. G., 1966. Genetical aspects of metrical growth and form in animals. Quarterly Review of Biology 41, 131–190.

    Google Scholar 

  • Davis, C. S., Delisle, I., Stirling, I., Siniff, D. B., Strobeck, C., 2004. A phylogeny of the extant Phocidae inferred from complete mitochondrial DNA coding regions. Molecular Phylogenetics and Evolution 33, 363–377.

    Google Scholar 

  • Decker, R. L., Szalay, F. S., 1974. Origins and function of the pes in the Eocene Adapidae (Lemuriformes, Primates). In: Jenkins, F. A., Jr. (Ed.), Primate Locomotion. Academic Press, New York, pp. 261–291.

    Google Scholar 

  • Dryden, I. L., Mardia, K. V., 1998. Statistical Analysis of Shape. Wiley, New York.

    Google Scholar 

  • Eguchi, S., Townsend, G. C., Richards, L. C., Hughes, T., Kasai, K., 2004. Genetic contribution to dental arch size variation in Australian twins. Archives of Oral Biology 49, 1015–1024.

    Google Scholar 

  • Eisenberg, J. F., 1981. The Mammalian Radiations: An Analysis of Trends in Evolution, Adaptation, and Behavior. Chicago University Press, Chicago, IL.

    Google Scholar 

  • Eisenberg, J. F., 1989. Mammals of the Neotropics: the Northern Neotropics. University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Evans, H. E., 1993. Miller’s Anatomy of the Dog, 3rd Ed. W. B. Saunders, Philadelphia.

    Google Scholar 

  • Felsenstein, J., 1973. Maximum-likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics 25, 471–492.

    Google Scholar 

  • Felsenstein, J., 1981. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution 35, 1229–1242.

    Google Scholar 

  • Felsenstein, J., 1988. Phylogenies and quantitative characters. Annual Review of Ecology and Systematics 19, 445–471.

    Google Scholar 

  • Felsenstein, J., 1993. PHYLIP Phylogeny Inference Package version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle.

    Google Scholar 

  • Felsenstein, J., 2002. Quantitative characters, phylogenies, and morphometrics. In: MacLeod, N., Forey, P. (Eds.), Morphology, Shape, and Phylogenetics. Taylor & Francis, London, pp. 27–44.

    Google Scholar 

  • Flynn, J. J., 1996. Carnivoran phylogeny and rates of evolution: morphological, taxic, and molecular. In: Gittleman, J. L. (Ed.), Carnivore Behavior, Ecology, and Evolution, Cornell University Press, Ithaca, NY, pp. 542–581.

    Google Scholar 

  • Flynn, J. J., Nedbal, M. A., 1998. Phylogeny of the Carnivora (Mammalia): congruence vs. incompatibility among multiple data sets. Molecular Phylogenetics and Evolution 9, 414–426.

    Google Scholar 

  • Flynn, J. J., Wesley-Hunt, G. D., 2005. Carnivora. In: Archibald, D., Rose, K. (Eds.), Origin, Timing, and Relationships of the Major Clades of Extant Placental Mammals. Johns Hopkins University Press, Baltimore, MD, pp. 175–198.

    Google Scholar 

  • Flynn, J. J., Neff, N. A., Tedford, R. H., 1988. Phylogeny of the Carnivora. In: Benton, M. J. (Ed.), The Phylogeny and Classification of Tetrapods, Volume 2. Clarendon, Oxford, pp. 73–116.

    Google Scholar 

  • Flynn, J. J., Nedbal, M. A., Dragoo, J. W., Honeycutt, R. L., 2000. Whence the red panda? Molecular Phylogenetics and Evolution 17, 190–199.

    Google Scholar 

  • Flynn, J. J., Finarelli, J. A., Zehr, S., Hsu, J., Nedbal, M. A., 2005. Molecular phylogeny of the Carnivora Mammalia: assessing the impact of increased sampling on resolving enigmatic relationships. Systematic Biology 54, 317–337.

    Google Scholar 

  • Fox, R. C., Youzwyshyn, G. P., 1994. New primitive carnivorans Mammalia from the Paleocene of Western Canada, and their bearing on relationships of the order. Journal of Vertebrate Paleontology 14, 382–404.

    Google Scholar 

  • Gambaryan, P. P., 1974. How Mammals Run: Anatomical Adaptations. Wiley, New York.

    Google Scholar 

  • Garland, T. Jr., Ives, A. R., 2000. Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. American Naturalist 155, 346–364.

    Google Scholar 

  • Garland, T. Jr., Midford, P. E., Ives, A. R., 1999. An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. American Zoologist 39, 374–388.

    Google Scholar 

  • Gaubert, P., Veron, G., 2003. Exhaustive sample set among Viverridae reveals the sister-group of felids: the linsangs as a case of extreme morphological convergence within Feliformia. Proceedings of the Royal Society of London B 270, 2523–2530.

    Google Scholar 

  • Gingerich, P. D., 1993. Quantification and comparison of evolutionary rates. American Journal of Science 293-A, 453–478.

    Google Scholar 

  • Gingerich, P. D., 2001. Rates of evolution on the time scale of the evolutionary process. Genetica 112–113, 127–144.

    Google Scholar 

  • Gingerich, P. D., Winkler, D. A., 1985. Systematics of Paleocene Viverravidae (Mammalia, Carnivora) in the Bighorn Basin and Clark’s Fork Basin, Wyoming. Contributions from the Museum of Paleontology, University of Michigan 27, 87–128.

    Google Scholar 

  • Grafen, A., 1989. The phylogenetic regression. Philosophical Transactions of the Royal Society of London B 326, 119–137.

    Google Scholar 

  • Graur, D., Martin, W., 2004. Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends in Genetics 20, 80–86.

    Google Scholar 

  • Gonyea, W. J., 1976. Adaptive differences in the body proportions of large felids. Acta Anatomica 96, 81–96.

    Google Scholar 

  • Goslow, G. E., Van de Graff, K., 1982. Hindlimb joint angle changes and action of the primary extensor muscles during posture and locomotion in the Striped skunk Mephitis mephitis. Journal of Zoology (London) 1982, 405–419.

    Google Scholar 

  • Greene, E. C., 1935. Anatomy of the rat. Transactions of the American Philosophical Society 27, 1–370.

    Google Scholar 

  • Gregory, W. K., 1951. Evolution Emerging. Macmillan, New York.

    Google Scholar 

  • Grüneberg, H., 1967. The Pathology of Development: A Study of Inherited Skeletal Disorders in Animals. Blackwell, Oxford.

    Google Scholar 

  • Hansen, T. F., Martins, E. P., 1996. Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data. Evolution 50, 1404–1417.

    Google Scholar 

  • Hecht, M. K., 1965. The role of natural selection and evolutionary rates in the origin of higher levels of organization. Systematic Zoology 14, 301–317.

    Google Scholar 

  • Heinrich, R. E., Rose, K. D., 1997. Postcranial morphology and locomotor behaviour of two early Eocene miacoid carnivorans, Vulpavus and Didymictis. Palaeontology 40, 279–305.

    Google Scholar 

  • Hildebrand, M., 1954. Comparative morphology of the body skeleton in recent Canidae. University of California Publications in Zoology 52, 399–470.

    Google Scholar 

  • Hildebrand, M., 1980. The adaptive significance of tetrapod gait selection. American Zoologist 20, 255–267.

    Google Scholar 

  • Howard, L. D., 1973. Muscular anatomy of the hind limb of the otter Enhydra lutris. Proceedings of the California Academy of Sciences 40, 335–416.

    Google Scholar 

  • Howell, A. B., 1929. Contribution to the comparative anatomy of the eared and earless seals genera Zalophus and Phoca. Proceedings of USNM 73, 1–142.

    Google Scholar 

  • Howell, A. B., 1930. Aquatic Mammals: Their Adaptations to Life in the Water. Charles Thomas, Springfield, IL.

    Google Scholar 

  • Howell, A. B., 1944. Speed in Animals. University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Hunt, R. M., Tedford, R. A., 1993. Phylogenetic relationships within the aeluroid carnivora and implications of their temporal and geographic distribution. In: Szalay, F. S., Novacek, M. J., McKenna (Eds.), Mammalian Phylogeny: Placentals. Springer, New York, pp. 53–73.

    Google Scholar 

  • Janis, C. M., Baskin, J. A., Berta, A., Flynn, J. J., Gunnell, G. F., Hunt, R. M., Martin, L. D., Munthe, K., 1998. Carnivorous mammals. In: Janis, C. M., Scott, K. M., Jacobs, L. J. (Eds.), Tertiary Mammals of North America. Cambridge University Press, Cambridge, pp. 73–90.

    Google Scholar 

  • Jenkins, F. A., Camazine, S. M., 1977. Hip structure and locomotion in ambulatory and cursorial carnivores. Journal of Zoology (London) 181, 351–370.

    Google Scholar 

  • Jenkins, F. A., McClearn, D., 1984. Mechanisms of hind foot reversal in climbing mammals. Journal of Morphology 182, 197–219.

    Google Scholar 

  • Kennel Club, 1998. Illustrated Breed Standards: the Official Guide to Registered Breeds. Ebury, London.

    Google Scholar 

  • Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. Journal of Molecular Evolution 16, 111–120.

    Google Scholar 

  • King, J. E., 1966. Relationships of the hooded and elephant seals (Genera Cystophora and Mirounga). Journal of Zoology (London) 148, 385–398.

    Google Scholar 

  • Kirkpatrick, M., 1982. Quantum evolution and punctuated equilibria in continuous genetic characters. American Naturalist 119, 833–848.

    Google Scholar 

  • Kluge, A. G., 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Systematic Zoology 38, 7–25.

    Google Scholar 

  • Koepfli, K.-P., Wayne, R. K., 1998. Phylogenetic relationships of otters Carnivora: Mustelidae based on mitochondrial cytochrome b sequences. Journal of Zoology 246, 401–416.

    Google Scholar 

  • Koepfli, K.-P., Wayne, R. K., 2003. Type-1 STS markers are more informative than cytochrome b in phylogenetic reconstruction of the Mustelidae (Mammalia: Carnivora). Systematic Biology 52, 571–593.

    Google Scholar 

  • Lande, R., 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution 30, 314–344.

    Google Scholar 

  • Lande, R., 1986. The dynamics of peak shifts and the pattern of morphological evolution. Paleobiology 12, 343–354.

    Google Scholar 

  • Ledge, C., Árnason, Ú., 1996a. Phylogenetic analyses of complete cytochrome b genes of the Order Carnivora with particular emphasis on the Canifornia. Journal of Molecular Evolution 42, 135–144.

    Google Scholar 

  • Ledge, C., Árnason, Ú., 1996b. Phylogenetic relationships within caniform carnivores based on analyses of the mitochondrial 12S rRNA gene. Journal of Molecular Evolution 43, 641–649.

    Google Scholar 

  • Lento, G. M., Hickson, R. E., Chambers, G. K., Penny, D., 1995. Use of spectral analysis to test hypotheses on the origin of pinnipeds. Molecular Biology and Evolution 12, 28–52.

    Google Scholar 

  • Lewis, O. J., 1989. Functional Morphology of the Evolving Hand and Foot. Clarendon, Oxford.

    Google Scholar 

  • Lohmann, G. P., 1983. Eigenshape analysis of microfossils: a general morphometric method for describing changes in shape. Mathematical Geology 15, 659–672.

    Google Scholar 

  • Lohmann, G. P., Schweitzer, P. N., 1990. On eigenshape analysis. The University of Michigan Museum of Zoology, Special Publication 2, 145–166.

    Google Scholar 

  • MacConnaill, M. A., 1946a. Studies in the mechanics of synovial joints. I. Fundamental principles and diadochal movements. Irish Journal of Medical Science 246, 190–199.

    Google Scholar 

  • MacConnaill, M. A., 1946b. Studies in the mechanics of synovial joints. II. Displacements on articular surfaces and the significance of saddle joints. Irish Journal Medical Science 247, 223–235.

    Google Scholar 

  • MacConnaill, M. A., 1946c. Studies in the mechanics of synovial joints. III. Hinge-joints and the nature of intra-articular displacements. Irish Journal of Medical Science 249, 620–626.

    Google Scholar 

  • MacLeod, N., 1999. Generalizing and extending the eigenshape method of shape space visualization and analysis. Paleobiology 25, 107–138.

    Google Scholar 

  • MacLeod, N., 2002. Testing evolutionary hypotheses with adaptive landscapes: use of random phylogenetic-morphological simulation studies. Mathematical Geology 6, 45–55.

    Google Scholar 

  • MacLeod, N., Rose, K. D., 1993. Inferring locomotor behavior in paleogene mammals via eigenshape analysis. American Journal of Science 293-A, 300–355.

    Google Scholar 

  • Martins, E. P., Hansen, T. F., 1997. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. American Naturalist 149, 646–667.

    Google Scholar 

  • McArdle, B., Rodrigo, A. G., 1994. Estimating the ancestral states of a continuous-valued character using squared-change parsimony: an analytical solution. Systematic Biology 43, 573–578.

    Google Scholar 

  • Miyamoto, M. M., 1985. Consensus cladograms and general classifications. Cladistics 1, 186–189.

    Google Scholar 

  • Nadal-Roberts, M., Collard, M., 2005. The impact of methodological choices on assessments of the reliability of fossil primate phylogenetic hypotheses. Folia Primatologica 76, 207–221.

    Google Scholar 

  • Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Pie, M. R., Weitz, J. S., 2005. A null model of morphospace occupation. American Naturalist 166, E1–E13.

    Google Scholar 

  • Polly, P. D., 1997. Ancestry and species definition in paleontology: a stratocladistic analysis of Viverravidae (Carnivora, Mammalia) from Wyoming. Contributions from the Museum of Paleontology, University of Michigan 30, 1–53.

    Google Scholar 

  • Polly, P. D., 1998. Cope’s Rule. Science 282, 50–51.

    Google Scholar 

  • Polly, P. D., 2001. Paleontology and the comparative method: ancestral node reconstructions versus observed node values. American Naturalist 157, 596–609.

    Google Scholar 

  • Polly, P. D., 2002. Phylogenetic tests for differences in shape and the importance of divergence times: Eldredge’s enigma explored. In: MacLeod, N., Forey, P. (Eds.), Morphology, Shape, and Phylogenetics. Taylor & Francis, London, pp. 220–246.

    Google Scholar 

  • Polly, P. D., 2003a. Paleophylogeography: the tempo of geographic differentiation in marmots (Marmota). Journal of Mammalogy 84, 369–384.

    Google Scholar 

  • Polly, P. D., 2003b. Paleophylogeography of Sorex araneus: molar shape as a morphological marker for fossil shrews. Mammalia 68, 233–243.

    Google Scholar 

  • Polly, P. D., 2004. On the simulation of the evolution of morphological shape: multivariate shape under selection and drift. Palaeontologia Electronica 7.2.7A, 28 pp. http://palaeo-electronica.org/paleo/2004_2/evo/issue2_04.htm.

  • Polly, P. D., 2005. Development, geography, and sample size in P matrix evolution: molar-shape change in island populations of Sorex araneus. Evolution and Development 7, 29–41.

    Google Scholar 

  • Rohlf, F. J., 1990. Rotational fit Procrustes methods. In: Rohlf, F. J., Bookstein, F. L. (Eds.), Proceedings of the Michigan Morphometrics Workshop. The University of Michigan Museum of Zoology, Special Publication 2, 227–236.

    Google Scholar 

  • Rohlf, F. J., 2001. Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55, 2143–2160.

    Google Scholar 

  • Rohlf, F. J., Corti, M., 2000. Use of two-block partial least-squares to study covariation in shape. Systematic Biology 49, 740–753.

    Google Scholar 

  • Rohlf, F. J., Slice, D., 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39, 40–49.

    Google Scholar 

  • Roopnarine, P. D., 2001. The description and classification of evolutionary mode: a computational approach. Paleobiology 27, 446–465.

    Google Scholar 

  • Rosen, D. E., 1974. Cladism or gradism? A reply to Ernst Mayr Systematic Zoology 23, 446–451.

    Google Scholar 

  • Salton, J. A., Szalay, F. S., 2004. The tarsal complex of Afro-malagasy Tenrecoidea: a search for phylogenetically meaningful characters. Journal of Mammalian Evolution 11, 73–104.

    Google Scholar 

  • Salazar-Ciudad, I., Jernvall, J., 2004. How different types of pattern formation mechanisms affect the evolution of form and development. Evolution and Development 6, 6–16.

    Google Scholar 

  • Sampson, P. D., Streissguth, A. P., Barr, H. M., Bookstein, F. L., 1989. Neurobehavioral effects of prenatal alcohol: Part II. Partial least squares analysis. Neurotoxicology and Teratology 11, 477–491.

    Google Scholar 

  • Sato, J. J., Hosoda, T., Wolsan, M., Tsuchiya, K., Yamamoto, Y., Suzuki, H., 2003. Phylogenetic relationship and divergence times among mustelids Mammalia: Carnivora based on nucleotide sequences of the nuclear interphotoreceptor retinoid binding protein and mitochondrial cytochrome b genes. Zoological Science 20, 243–264.

    Google Scholar 

  • Sato, J. J., Hosoda, T., Wolsan, M., Suzuki, H., 2004. Molecular phylogeny of Arctoides (Mammalia: Carnivora) with emphasis on phylogenetic and taxonomic positions of the ferret-badgers and skunks. Zoological Science 21, 111–118.

    Google Scholar 

  • Schaeffer, B., 1947. Notes on the origin and function of the artiodactyl tarsus. American Museum Novitates 1356, 1–24.

    Google Scholar 

  • Schluter, D., 1996. Adaptive radiation along genetic lines of least resistance. Evolution 50, 1766–1774.

    Google Scholar 

  • Schmalhausen, I. I., 1949. Factors of Evolution: The Theory of Stabilizing Selection. Translated by T. Dobzhansky. Blakiston, Philadelphia.

    Google Scholar 

  • Silva, M., Downing, J. A., 1995. The CRC Handbook of Mammalian Body Masses. CRC, Boca Raton, FL.

    Google Scholar 

  • Simpson, G. G., 1944. Tempo and Mode in Evolution. Columbia University Press, New York.

    Google Scholar 

  • Simpson, G. G., 1945. The principles of classification and a classification of mammals. Bulletin of the AMNH 85, 1–350.

    Google Scholar 

  • Simpson, G. G., 1953. The Major Features of Evolution. Columbia University Press, New York.

    Google Scholar 

  • Slattery, J. P., O’Brien, S. J., 1995. Molecular phylogeny of the red panda Ailurus fulgens. Heredity 86, 413–422.

    Google Scholar 

  • Springer, M. S., 1997. Molecular clocks and the timing of placental and marsupial radiations in relation to the Cretaceous-Tertiary boundary. Journal of Mammalian Evolution 4, 285–302.

    Google Scholar 

  • Stanley, S. M., 1973. Explanation for Cope’s rule. Evolution 27, 1–26.

    Google Scholar 

  • Szalay, F. S., 1977a. Phylogenetic relationships and a classification of the eutherian Mammalia. In: Hecht, M. K., Goody, P. C., Hecht, B. M. (Eds.), Major Patterns in Vertebrate Evolution. Plenum, New York, pp. 315–374.

    Google Scholar 

  • Szalay, F. S., 1977b. Ancestors, descendants, sister groups, and testing of phylogenetic hypotheses. Systematic Zoology 26, 12–18.

    Google Scholar 

  • Szalay, F. S., 1981. Functional analysis and the practice of the phylogenetic method as reflected by some mammalian studies. American Zoologist 21, 37–45.

    Google Scholar 

  • Szalay, F. S., 1984. Arboreality: is it homologous in Metatherian and Eutherian mammals? In: Hecht, M. K., Wallace, B., Prance, G. T. (Eds.), Evolutionary Biology, Volume 18. Plenum, New York.

    Google Scholar 

  • Szalay, F. S., 1994. Evolutionary History of the Marsupials and an Analysis of Osteological Characters. Cambridge University Press, Cambridge.

    Google Scholar 

  • Szalay, F. S., 2000. Function and adaptation in paleontology and phylogenetics: Why do we omit Darwin? Palaeontologia Electronica 3.2.2, 25 pp. 372KB. http://palaeo-electronica.org/2000_2/darwin/issue2_00.htm.

  • Szalay, F. S., Bock, W. J., 1991. Evolutionary theory and systematics: relationships between process and patterns. Zeitschrift für Zoologische Systematik und Evolutionsforschung 29, 1–39.

    Google Scholar 

  • Szalay, F. S., Decker, R. L., 1974. Origins, evolution, and function of the tarsus in Late Cretaceous Eutheria and Paleocene Primates. In: Jenkins, F. A., Jr. (Ed.), Primate Locomotion. Academic Press: New York, pp. 223–259.

    Google Scholar 

  • Szalay, F. S., Drawhorn, G., 1980. Evolution and diversification of the Archona in an arboreal milieu. In: Luckett, W. P. (Ed.), Comparative Biology and Evolutionary Relationships of Tree Shrews. Plenum, New York, pp. 133–169.

    Google Scholar 

  • Szalay, F. S., Schrenk, F., 1998. The middle Eocene Eurotamandua and a Darwinian phylogenetic analysis of “edentates”. Kaupia 7, 97–186.

    Google Scholar 

  • Taylor, M. E., 1970. Locomotion in some East African viverrids. Journal of Mammals 51, 42–51.

    Google Scholar 

  • Taylor, M. E., 1976. The functional anatomy of the hindlimb of some African Viverridae (Carnivora). Journal of Morphology 148, 227–254.

    Google Scholar 

  • Taylor, M. E., 1988. Foot structure and phylogeny in the Viverridae (Carnivora). Journal of Zoology (London) 216, 131–139.

    Google Scholar 

  • Taylor, M. E., 1989. Locomotor adaptations. In: Gittleman, J. L. (Ed.), Carnivore Behavior, Ecology, and Evolution. Cornell University Press, Ithaca, NY, pp. 382–409.

    Google Scholar 

  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., Higgins, D. G., 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24, 4876–4882.

    Google Scholar 

  • Thorpe, R. S., 1981. The morphometrics of the mouse: a review. In: Berry, R. J. (Ed.), Biology of the House Mouse. Zoological Society of London, London, pp. 85–125.

    Google Scholar 

  • Van Valkenburgh, B., 1985. Locomotor diversity within past and present guilds of large predatory mammals. Journal of Vertebrate Paleontology 11, 406–428.

    Google Scholar 

  • Van Valkenburgh, B., Wang, X. M., Damuth, J., 2004. Cope’s rule, hypercarnivory, and extinction in North American canids. Science 306, 101–104.

    Google Scholar 

  • Veron, G., Heard, S., 2000. Molecular systematics of the Asiatic Viverridae Carnivora inferred from mitochondrial cytochrome b sequence analysis. Journal of Zoological Systematics and Evolutionary Research 38, 209–217.

    Google Scholar 

  • Veron, G., Colyn, M., Dunham, A. E., Taylor, P., Gaubert, P., 2004. Molecular systematics and evolution of sociality in mongooses Herpestidae, Carnivora. Molecular Phylogenetics and Evolution 30, 582–598.

    Google Scholar 

  • Wake, D. B., Roth, G., Wake, M. H., 1983. On the problem of stasis in organismal evolution. Journal of Theoretical Biology 101, 211–224.

    Google Scholar 

  • Wang, X., 1997. New cranial material of Simocyon from China and its implications for phylogenetic relationships to the Red panda Ailurus. Journal of Vertebrate Paleontology 17, 184–198.

    Google Scholar 

  • Wayne, R. K., Benveniste, R. E., Janczewski, D. N., O’Brien, S. J., 1989. Molecular and biochemical evolution of the Carnivora. In: Gittleman, J. L. (Ed.), Carnivore Behavior, Ecology, and Evolution, Volume 1. Comstock Cornell, Ithaca, NY, pp. 465–495.

    Google Scholar 

  • Werdelin, L., 1996. Carnivoran ecomorphology: a phylogenetic perspective. In: Gittleman, J. L. (Ed.), Carnivore Behavior, Ecology, and Evolution, Volume 2. Comstock Cornell, Ithaca, NY, pp. 582–624.

    Google Scholar 

  • Wesley-Hunt, G. D., Flynn, J. J., 2005. Phylogeny of the carnivora: basal relationships among the carnivoramorphans and assessment of the position of “Miacoidea” relative to crown-clade Carnivora. Journal of Systematic Palaeontology 3, 1–28.

    Google Scholar 

  • Wolsan, M., 1993. Phylogeny and classification of early European Mustelida (Mammalia: Carnivora). Acta Theriologica 38, 345–384.

    Google Scholar 

  • Wozencraft, W. C., 1989. The phylogeny of the recent Carnivora. In: Gittleman, J. L. (Ed.), Carnivore Behavior, Ecology, and Evolution, Volume 1. Comstock Cornell, Ithaca, NY, pp. 495–535.

    Google Scholar 

  • Wright, S., 1988. Surfaces of selective value revisited. American Naturalist 131, 115–123.

    Google Scholar 

  • Wyss, A. R., 1988. On “retrogression” in the evolution of the Phocinae and phylogenetic affinities of the monk seals. American Museum Novitates 2924, 1–38.

    Google Scholar 

  • Wyss, A. R., Flynn, J. J., 1993. A phylogenetic analysis and definition of the Carnivora. In: Szalay, F. S., Novacek, M. J., McKenna, M. C. (Eds.), Mammal Phylogeny: Placentals. Springer, New York, pp. 32–52.

    Google Scholar 

  • Yu, L., Zhang, Y.-P., 2005. Phylogenetic studies of pantherine cats (Felidae) based on multiple genes, with novel application of nuclear p-fibrinogen intron 7 to carnivores. Molecular Phylogenetics and Evolution 35, 483–495.

    Google Scholar 

  • Yu, L., Li, Q.-W., Ryder, O. A., Zhang, Y.-P., 2004. Phylogenetic relationships within mammalian order Carnivora indicated by sequences of two nuclear DNA genes. Molecular Phylogenetics and Evolution 33, 694–705.

    Google Scholar 

  • Zelditch, M. L., Ludrigan, B. L., Garland, T., 2004. Developmental regulation of skull morphology. I. Ontogenetic dynamics of variance. Evolution and Development 6, 194–206.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Polly, P.D. (2008). Adaptive Zones and the Pinniped Ankle: A Three-Dimensional Quantitative Analysis of Carnivoran Tarsal Evolution. In: Sargis, E.J., Dagosto, M. (eds) Mammalian Evolutionary Morphology. Vertebrate Paleobiology and Paleoanthropology Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6997-0_9

Download citation

Publish with us

Policies and ethics