Postcranial Skeleton of the Upper Paleocene (Itaboraian) “Condylarthra” (Mammalia) of Itaboraí Basin, Brazil

  • Lilian P. Bergqvist
Part of the Vertebrate Paleobiology and Paleoanthropology Series book series (VERT)

The Itaborai Basin, in the state of Rio de Janeiro, is one of the smallest depositional basins in Brazil and is the only one to have yielded a terrestrial fauna of late Paleocene age. For 50 years its limestone was commercially exploited, allowing the recovery of a great amount of fossil vertebrates, predominantly from fissure fill deposits (Sequence S2 sensu Medeiros and Bergqvist, 1999), of Itaboraian age. Among the vertebrates, the fossil mammals are the most abundant, with marsupials being the most diverse but ungulates the most abundant. Fossil edentates are very rare. Since the end of the 1980s, the Itaborai basin has been completely flooded and no further fossil collecting has been possible (Figure 6.1).

Among the ungulates, the “condylarths” comprise the second least abundant group next to the Xenungulata. The relationships of most “condylarths” are very uncertain and they probably represent a paraphyletic assemblage. Some authors have advocated abandonment of the concept of Condylarthra altogether. Herein I follow the concept of “Condylarthra” as advocated by Archibald (2005), and the recommendation of Prothero et al. (1988) to add quotation marks to the term “condylarth” in order to emphasize its paraphyly, as already done by Muizon and Cifelli (2000).


Depression Flare Miocene Perforation Sorting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almeida, E. B., 2005. Aspectos tafonômicos dos fósseis de mamíferos procedentes da Bacia de São José de Itaboraí, RJ–Paleoceno superior. Master thesis, Universidade Federal do Rio Grande do Sul.Google Scholar
  2. Archibald, D., 2005. Archaic ungulates (“Condylarthra”). In: Janis, C. M., Soctt, K. M., Jacobs, L. L. (Eds.), Evolution of Tertiary Mammals of North America. Cambridge University Press, Cambridge, pp. 292–331.Google Scholar
  3. Bergqvist, L. P., 1996. Reassociação do pós-crânio às espécies de ungulados da bacia de S. J. de Itaboraí (Paleoceno), Estado do Rio de Janeiro, e filogenia dos “Condylarthra” e ungulados sul-americanos com base no pós-crânio. Ph.D. dissertation, Universidade Federal do Rio Grande do Sul.Google Scholar
  4. Bergqvist, L. P., 1997. New Postcranial Apomorphies Shared by Primitive and Advanced Taxa of the Order Litopterna. Boletim de Resumos do XV Congresso Brasileiro de Paleontologia, São Pedro, p. 131.Google Scholar
  5. Bergqvist, L. P., 1998. Postcranial bones reassociated to Condylarthra species of Itaboraí basin (Late Paleocene, Brazil). Journal of Vertebrate Paleontology 18(3), 27A.Google Scholar
  6. Bergqvist, L. P., 2003. The role of teeth in mammal history. Brazilian Journal of Oral Science 2(6), 249–257.Google Scholar
  7. Bergqvist, L. P., 2005. Postcranial synapomorphies supporting the monophyly of the Order Litopterna. Boletim de Resumos do II Congresso Latino-Americano de Paleontologia de Vertebrados, Rio de Janeiro, pp. 48–49.Google Scholar
  8. Bond, M., Carlini, A. A., Goin, F. J., Legarreta, L., Ortiz-Jaureguizar, E., Pascual, R., Uliana, M. A., 1995. Episodes in South American land mammal evolution and sedimentation: testing their apparent concurrence in a Paleocene succession from Central Patagonia. Actas del VI Congreso Argentino de Paleontología y Bioestratigrafia, Trelew, pp. 47–58.Google Scholar
  9. Carrano, M. T., 1997. Morphological indicators of foot posture in mammals: a statistical and biomechanical analysis. Zoological Journal of the Linnean Society 121, 77–104.CrossRefGoogle Scholar
  10. Cifelli, R. L., 1983a. Eutherian tarsals from the late Paleocene of Brazil. American Museum Novitates 2761, 1–31.Google Scholar
  11. Cifelli, R. L., 1983b. The origin and affinities of the South American “Condylarthra” and early Tertiary Litopterna (Mammalia). American Museum Novitates 2772, 1–49.Google Scholar
  12. Cifelli, R. L., 1993. The phylogeny of the native South American ungulates. In: Szalay, F.S., Novacek, M. J., McKenna, M. C. (Eds.), Mammal Phylogeny – Placentals. Springer, New York, pp. 195–216.CrossRefGoogle Scholar
  13. Cifelli, R. L., Guerrero-Diaz, J., 1989. New remains of Prothoatherium colombianus (Litopterna, Mammalia) from the Miocene of Colombia. Journal of Vertebrate Paleontology 9(2), 222–231.CrossRefGoogle Scholar
  14. Cifelli, R. L., Villaroel, C., 1997. Paleobiology and affinities of Megadolodus. In: Kay, R. F., Madden, R. H., Cifelli, R. L., Flynn, J. J. (Eds.), Vertebrate Paleontology in the Neotropics. Smithsonian Institution Press, Washington, DC, pp. 265–288.Google Scholar
  15. Damuth, J., 1990. Problems in estimating body masses of archaic ungulates using dental measurements. In: Damuth, J., MacFadden, B. J. (Eds.), Body Size in Mammalian Paleobiology. Cambridge University Press, Cambridge, pp. 229–253.Google Scholar
  16. Damuth, J., MacFadden, B. J., 1990. Body Size in Mammalian Paleobiology. Cambridge University Press, Cambridge, 397 pp.Google Scholar
  17. Emry, R. S., 1970. A North American Oligocene pangolin and other additions to the Pholidota. Bulletin of the American Museum of Natural History 142(6), 459–510.Google Scholar
  18. Fortelius, M., 1990. Problems with using teeth to estimate body sizes of extinct mammals. In: Damuth, J., MacFadden, B. J. (Eds.), Body Size in Mammalian Paleobiology. Cambridge University Press, Cambridge, pp. 207–228.Google Scholar
  19. Gazin, C. L., 1965. A study of the early Tertiary condylarthran mammal Meniscotherium. Smithsonian Miscellaneous Collections 149(2), 1–98.Google Scholar
  20. Gazin, C. L., 1968. A study of the Eocene condylarthran mammal Hyopsodus. Smithsonian Miscellaneous Collections 153(4), 1–90.Google Scholar
  21. Getty, R., 1975. The Anatomy of the Domestic Animals. W.B. Saunders, Philadelphia, 2, 095 pp (2 volumes)Google Scholar
  22. Gingerich, P. D., 1974. Size variability of the teeth in living mammals and the diagnosis of closely related sympatric fossil species. Journal of Paleontology 48(5), 895–903.Google Scholar
  23. Gingerich, P. D., Smith, B. H., Rosenberg, K., 1982. Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. American Journal of Physical Anthropology 58, 81–100.CrossRefGoogle Scholar
  24. Hillson, S., 1996. Teeth. Cambridge University Press, Cambridge, 376 pp.Google Scholar
  25. Matthew, W. D., 1909. The Carnivora and Insectivora of the Bridger Basin, middle Eocene. Part IV. Memoirs Bulletin of the American Museum of Natural History 9(6), 289–567.Google Scholar
  26. Matthew, W. D., 1937. Paleocene faunas of the San Juan Basin, New Mexico. Transaction of the American Philosophical Society, new series, 30, 1–372Google Scholar
  27. Medeiros, R. A., Bergqvist, L. P., 1999. Paleocene of the São José de Itaboraí Basin, Rio de Janeiro, Brazil: lithostratigraphy and biostratigraphy. Acta Geologica Leopoldensia 22(48), 3–22.Google Scholar
  28. McKenna, M. C., Bell, S. K. 1997. Classification of Mammals above the Species Level. Columbia University Press, New York, 963 pp.Google Scholar
  29. Muizon, C., Cifelli, R. L., Bergqvist, L. P., 1998. Eutheran tarsals from the early Paleocene of Bolivia. Journal of Vertebrate Paleontology 18(3), 655–663.CrossRefGoogle Scholar
  30. Muizon, C., Cifelli, R. L., 2000. The “condylarths” (archaic Ungulata, Mammalia) from the early Paleocene of Tiupampa (Bolivia): implications on the origin of the South American ungulates. Geodiversitas 22(1), 47–150.Google Scholar
  31. O’Leary, M. A., Rose, K. D., 1995. Postcranial skeleton of the early Eocene mesonychid Pachyaena (Mammalia: Mesonychia). Journal of Vertebrate Paleontology 15(2): 401–430.CrossRefGoogle Scholar
  32. Paula-Couto, C., 1949. Novas observações sobre paleontologia e geologia do depósito calcário de São José de Itaboraí. Notas Preliminares e Estudos, Divisão de Geologia e Mineralogia 49, 1–13.Google Scholar
  33. Paula-Couto, C., 1952. Fossil mammals from the beginning of the Cenozoic in Brazil. Condylarthra, Litopterna, Xenungulata and Astrapotheria. Bulletin of the American Museum of Natural History 99(6), 359–394.Google Scholar
  34. Paula-Couto, C., 1978. Ungulados fósseis do Riochiquense de Itaboraí, RJ, Brasil. II – Condylarthra e Litopterna. Anais da Academia Brasileira de Ciências 50(2), 209–218.Google Scholar
  35. Prothero, D. R., Manning, E. M., Fischer, M., 1988. The phylogeny of the ungulates. In: Benton, M. J. (Ed.), The Phylogeny and Classification of the Tetrapods, Volume 2: Mammals. Systematics Association Special Volume 35b, Clarendon, Oxford, pp. 201–234.Google Scholar
  36. Rose, K. D., 1990. Postcranial skeleton remains and adaptation in early Eocene mammals from the Willwood Formation, Bighorn Basin, Wyoming. In: Bown, T. W., Rose, K. D. (Eds.), Dawn of the Age of Mammals in the Northern Part of the Rocky Mountain Interior, North America: Boulder, Colorado. Geological Society of America, Special Paper, 243, 107–133Google Scholar
  37. Russell, D. E., 1964. Les mammifères Paléocènes d’Europe. Memoires du Museum National D’ Histoire Naturelle, Series C, 13, 1–324Google Scholar
  38. Schaeffer, B., 1947. Notes on the origin and function of the artiodactyl tarsus. American Museum Novitates 1356, 1–24.Google Scholar
  39. Scott, W. B., 1930. A partial skeleton of Homalodotherium from the Santa Cruz beds of Patagonia. Publications of the Field Museum of Natural History, Geological Memoirs 1(1), 7–34.Google Scholar
  40. Soria, M. F., 2001. Los Proterotheriidae (Litopterna, Mammalia) sistemática, origem y filogenia. Monografias del Museu Argentino de Ciencias Naturales 1, 1–167.Google Scholar
  41. Stain, H. J., 1959. Use of the calcaneum in studies of taxonomy and food habits. Journal of Mammalogy 40(3), 392–401.CrossRefGoogle Scholar
  42. Taylor, M. E., 1974. The functional anatomy of the forelimb of some African Viverridae (Carnivora). Journal of Morphology 143, 307–336.CrossRefGoogle Scholar
  43. Taylor, M. E., 1976. The functional anatomy of the hindlimb of some African Viverridae (Carnivora). Journal of Morphology 148, 227–254.CrossRefGoogle Scholar
  44. Thewissen, J. G. M., 1990. Evolution of Paleocene and Eocene Phenacodontidae (Mammalia, Condylarthra). University of Michigan Papers on Paleontology 29, 1–107.Google Scholar
  45. Van Valkenburgh, B., 1987. Skeletal indicators of locomotor behavior in living and extinct carnivores. Journal of Vertebrate Paleontology 7(2), 162–182.CrossRefGoogle Scholar
  46. Wang, X., 1993. Transformation from plantigrady to digitigrady: functional morphology of locomotion in Hesperocyon (Canidae: Carnivora). American Museum Novitates 3069, 1–23.Google Scholar
  47. Williamson, T. E., Lucas, S. G., 1992. Meniscotherium (Mammalia, “Condylarthra”) from the Paleocene-Eocene of Western North America. New Mexico Museum of Natural History and Science Bulletin 1, 1–75.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Lilian P. Bergqvist
    • 1
  1. 1.Departamento de GeologiaUniversidade Federal do Rio de JaneiroRio de Janeiro/RJBrazil

Personalised recommendations