Skip to main content

Neurogenesis and Potential Use of Stem Cells from Adult Human Brain

  • Chapter
Stem Cells, Human Embryos and Ethics

Neural stem cells are present in the adult human brain of mammals, including humans, and can give rise to the three major cell types of the central nervous system; neurons, astrocytes and oligodendrocytes. These stem cells hold great promise for neural repair after injury or disease, either by activating the stem cells residing within the brain and/or by transplantation of stem cells from the adult human brain after expanding them in culture dishes. Autologous transplantation, in which a patient is transplanted with cells derived from his or her own brain, could circumvent some of the problems associated with the use of embryonic stem cells or fetal tissue, in particular the ethical concerns and problems with immune rejection. However, it must be demonstrated that the necessary types of neural cells can be generated in sufficient amounts, and that they can induce long-lasting functional improvements in animal models of brain disease and injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Altman, J. (1969). “Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb”, J Comp Neurol 137(4): 433–57.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J. and G. D. Das (1965). “Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats”, J Comp Neurol 124(3): 319–35.

    Article  PubMed  CAS  Google Scholar 

  • Arsenijevic, Y., J. G. Villemure, et al. (2001). “Isolation of multipotent neural precursors residing in the cortex of the adult human brain”, Exp Neurol 170(1): 48–62.

    Article  PubMed  CAS  Google Scholar 

  • Arvidsson, A., T. Collin, et al. (2002). “Neuronal replacement from endogenous precursors in the adult brain after stroke”, Nat Med 8(9): 963–70.

    Article  PubMed  CAS  Google Scholar 

  • Backlund, E. O. (1987). “Transplantation to the brain – a new therapeutic principle or useless venture?”, Acta Neurochir Suppl (Wien) 41: 46–50.

    CAS  Google Scholar 

  • Backlund, E. O., P. O. Granberg et al. (1985). “Transplantation of adrenal medullary tissue to striatum in parkinsonism. First clinical trials”, J Neurosurg 62(2): 169–73.

    Article  PubMed  CAS  Google Scholar 

  • Barker, R. A. and H. Widner (2004). “Immune problems in central nervous system cell therapy”, NeuroRx 1(4): 472–81.

    Article  PubMed  Google Scholar 

  • Bjorklund, L. M., R. Sanchez-Pernaute, et al. (2002). “Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model”, Proc Natl Acad Sci USA 99(4): 2344–9.

    Article  PubMed  CAS  Google Scholar 

  • Brockes, J. P. (1997). “Amphibian limb regeneration: rebuilding a complex structure”, Science 276(5309): 81–7.

    Article  PubMed  CAS  Google Scholar 

  • Duan, W. M., H. Widner, et al. (1995). “Temporal pattern of host responses against intrastriatal grafts of syngeneic, allogeneic or xenogeneic embryonic neuronal tissue in rats”, Exp Brain Res 104(2): 227–42.

    Article  PubMed  CAS  Google Scholar 

  • Emsley, J. G., B. D. Mitchell, et al. (2005). “Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells”, Prog Neurobiol 75(5): 321–41.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson, P. S., E. Perfilieva, et al. (1998). “Neurogenesis in the adult human hippocampus”, Nat Med 4(11): 1313–7.

    Article  PubMed  CAS  Google Scholar 

  • Freed, C. R., P. E. Greene, et al. (2001). “Transplantation of embryonic dopamine neurons for severe Parkinson’s disease”, N Engl J Med 344(10): 710–9.

    Article  PubMed  CAS  Google Scholar 

  • Gage, F. H. (2000). “Mammalian neural stem cells”, Science 287(5457): 1433–8.

    Article  PubMed  CAS  Google Scholar 

  • Galvin, K. A. and D. G. Jones (2006). “Adult human neural stem cells for autologous cell replacement therapies for neurodegenerative disorders”, NeuroRehabilitation 21(3): 255–65.

    PubMed  Google Scholar 

  • Goh, E. L., D. Ma, et al. (2003). “Adult neural stem cells and repair of the adult central nervous system”, J Hematother Stem Cell Res 12(6): 671–9.

    Article  PubMed  Google Scholar 

  • Hablitz, J. J. and I. A. Langmoen (1982). “Excitation of hippocampal pyramidal cells by glutamate in the guinea- pig and rat”, J Physiol 325: 317–31.

    PubMed  CAS  Google Scholar 

  • Johansson, C. B., S. Momma, et al. (1999). “Identification of a neural stem cell in the adult mammalian central nervous system”, Cell 96(1): 25–34.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, C. B., M. Svensson, et al. (1999). “Neural stem cells in the adult human brain”, Exp Cell Res 253(2): 733–6.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, S., T. M. Bliss, et al. (2004). “Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex”, Proc Natl Acad Sci USA 101(32): 11839–44.

    Article  PubMed  CAS  Google Scholar 

  • Kempermann, G., L. Wiskott, et al. (2004). “Functional significance of adult neurogenesis”, Curr Opin Neurobiol 14(2): 186–91.

    Article  PubMed  CAS  Google Scholar 

  • Kornblum, H. I. (2007). “Introduction to neural stem cells”, Stroke 38(2 Suppl): 810–6.

    Article  PubMed  Google Scholar 

  • Kukekov, V. G., E. D. Laywell, et al. (1999). “Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain”, Exp Neurol 156(2): 333–44.

    Article  PubMed  CAS  Google Scholar 

  • Langmoen, I. A., M. Ohlsson, et al. (2003). “A new tool in restorative neurosurgery: creating niches for neuronal stem cells”, Neurosurgery 52(5): 1150–53.

    Article  PubMed  Google Scholar 

  • Le Belle, J. E., M. A. Caldwell, et al. (2004). “Improving the survival of human CNS precursor-derived neurons after transplantation”, J Neurosci Res 76(2): 174–83.

    Article  PubMed  CAS  Google Scholar 

  • Lie, D. C., H. Song, et al. (2004). “Neurogenesis in the adult brain: new strategies for central nervous system diseases”, Annu Rev Pharmacol Toxicol 44: 399–421.

    Article  PubMed  CAS  Google Scholar 

  • Liker, M. A., G. M. Petzinger, et al. (2003). “Human neural stem cell transplantation in the MPTP-lesioned mouse”, Brain Res 971(2): 168–77.

    Article  PubMed  CAS  Google Scholar 

  • Lindvall, O. and A. Bjorklund (2004). “Cell therapy in Parkinson’s disease”, NeuroRx 1(4): 382–93.

    Article  PubMed  Google Scholar 

  • Lopez-Garcia, C., A. Molowny, et al. (1992). “Lesion and regeneration in the medial cerebral cortex of lizards”, Histol Histopathol 7(4): 725–46.

    PubMed  CAS  Google Scholar 

  • Martino, G. and S. Pluchino (2006). “The therapeutic potential of neural stem cells”, Nat Rev Neurosci 7(5): 395–406.

    Article  PubMed  CAS  Google Scholar 

  • Mezey, E., K. J. Chandross, et al. (2000). “Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow”, Science 290(5497): 1779–82.

    Article  PubMed  CAS  Google Scholar 

  • Moe, M. C., M. Varghese, et al. (2005a). “Multipotent progenitor cells from the adult human brain: neurophysiological differentiation to mature neurons”, Brain 128(Pt 9): 2189–99.

    Article  PubMed  Google Scholar 

  • Moe, M. C., U. Westerlund, et al. (2005b). “Development of neuronal networks from single stem cells harvested from the adult human brain”, Neurosurgery 56(6): 1182–8; discussion 1188–90.

    Article  PubMed  Google Scholar 

  • Nakatomi, H., T. Kuriu, et al. (2002). “Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors”, Cell 110(4): 429–41.

    Article  PubMed  CAS  Google Scholar 

  • Nottebohm, F. (1981). “A brain for all seasons: cyclical anatomical changes in song control nuclei of the canary brain”, Science 214(4527): 1368–70.

    Article  PubMed  CAS  Google Scholar 

  • Nottebohm, F. (1985). “Neuronal replacement in adulthood”, Ann N Y Acad Sci 457: 143–61.

    Article  PubMed  CAS  Google Scholar 

  • Nottebohm, F. and A. P. Arnold (1976). “Sexual dimorphism in vocal control areas of the songbird brain”, Science 194(4261): 211–3.

    Article  PubMed  CAS  Google Scholar 

  • Nunes, M. C., N. S. Roy, et al. (2003). “Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain”, Nat Med 9(4): 439–47.

    Article  PubMed  CAS  Google Scholar 

  • Odorico, J. S., D. S. Kaufman, et al. (2001). “Multilineage differentiation from human embryonic stem cell lines”, Stem Cells 19(3): 193–204.

    Article  PubMed  CAS  Google Scholar 

  • Olstorn, H., M. C. Moe, et al. (2007). “Transplantation of stem cells from the adult human brain to the adult rat brain”, Neurosurgery 60(6): 1089–98; discussion 1098–9.

    Article  PubMed  Google Scholar 

  • Ostenfeld, T., M. A. Caldwell, et al. (2000). “Human neural precursor cells express low levels of telomerase in vitro and show diminishing cell proliferation with extensive axonal outgrowth following transplantation”, Exp Neuro 164(1): 215–26.

    Article  CAS  Google Scholar 

  • Pessina, A. and L. Gribaldo (2006). “The key role of adult stem cells: therapeutic perspectives”, Curr Med Res Opin 22(11): 2287–300.

    Article  PubMed  CAS  Google Scholar 

  • Pluchino, S., A. Quattrini, et al. (2003). “Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis”, Nature 422(6933): 688–94.

    Article  PubMed  CAS  Google Scholar 

  • Ramon y Cajal, S. (1913). “Degeneration and regeneration of the nervous system”, (London, Oxford UP, 1928.): (Day RM, translator, from the 1913 Spanish edition).

    Google Scholar 

  • Reynolds, B. A. and S. Weiss (1992). “Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system”, Science 255(5052): 1707–10.

    Article  PubMed  CAS  Google Scholar 

  • Riess, P., C. Zhang, et al. (2002). “Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury”, Neurosurgery 51(4): 1043–52; discussion 1052–4.

    Article  PubMed  Google Scholar 

  • Roy, N. S., S. Wang, et al. (2000). “In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus”, Nat Med 6(3): 271–7.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, B. J. and C. W. Olanow (2005). “Stem cell treatment for Parkinson’s disease: an update for 2005”, Curr Opin Neurol 18(4): 376–85.

    Article  PubMed  CAS  Google Scholar 

  • Song, H. J., C. F. Stevens, et al. (2002). “Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons”, Nat Neurosci 5(5): 438–45.

    PubMed  CAS  Google Scholar 

  • Svendsen, C. N. and M. A. Caldwell (2000). “Neural stem cells in the developing central nervous system: implications for cell therapy through transplantation”, Prog Brain Res 127: 13–34.

    Article  PubMed  CAS  Google Scholar 

  • Svendsen, C. N., M. A. Caldwell, et al. (1997). “Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease”, Exp Neurol 148(1): 135–46.

    Article  PubMed  CAS  Google Scholar 

  • Tai, Y. T. and C. N. Svendsen (2004). “Stem cells as a potential treatment of neurological disorders”, Curr Opin Pharmacol 4(1): 98–104.

    Article  PubMed  CAS  Google Scholar 

  • Taupin, P. (2006). “Autologous transplantation in the central nervous system”, Indian J Med Res 124(6): 613–8.

    PubMed  Google Scholar 

  • Taupin, P. and F. H. Gage (2002). “Adult neurogenesis and neural stem cells of the central nervous system in mammals”, J Neurosci Res 69(6): 745–9.

    Article  PubMed  CAS  Google Scholar 

  • Thored, P., A. Arvidsson, et al. (2005). “Persistent production of neurons from adult brain stem cells during recovery after stroke”, Stem Cells.

    Google Scholar 

  • Toda, H., J. Takahashi, et al. (2001). “Grafting neural stem cells improved the impaired spatial recognition in ischemic rats”, Neurosci Lett 316(1): 9–12.

    Article  PubMed  CAS  Google Scholar 

  • van Praag, H., A. F. Schinder, et al. (2002). “Functional neurogenesis in the adult hippocampus”, Nature 415(6875): 1030–4.

    Article  PubMed  Google Scholar 

  • Walton, N. M., B. M. Sutter, et al. (2006). “Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain”, Development 133(18): 3671–81.

    Article  PubMed  CAS  Google Scholar 

  • Wennersten, A., X. Meier, et al. (2004). “Proliferation, migration, and differentiation of human neural stem/progenitor cells after transplantation into a rat model of traumatic brain injury”, J Neurosurg 100(1): 88–96.

    Article  PubMed  Google Scholar 

  • Westerlund, U., M. C. Moe, et al. (2003). “Stem cells from the adult human brain develop into functional neurons in culture”, Exp Cell Res 289(2): 378–83.

    Article  PubMed  CAS  Google Scholar 

  • Westerlund, U., M. Svensson, et al. (2005). “Endoscopically harvested stem cells: a putative method in future autotransplantation”, Neurosurgery in press.

    Google Scholar 

  • Windrem, M. S., N. S. Roy, et al. (2002). “Progenitor cells derived from the adult human subcortical white matter disperse and differentiate as oligodendrocytes within demyelinated lesions of the rat brain”, J Neurosci Res 69(6): 966–75.

    Article  PubMed  CAS  Google Scholar 

  • Wu, P., Y. I. Tarasenko, et al. (2002). “Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat”, Nat Neurosci 5(12): 1271–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Ølstørn, H., Moe, M.C., Varghese, M., Langmoen, I.A. (2008). Neurogenesis and Potential Use of Stem Cells from Adult Human Brain. In: Østnor, L. (eds) Stem Cells, Human Embryos and Ethics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6989-5_4

Download citation

Publish with us

Policies and ethics