Advertisement

Tetrahedrane

  • Errol G Lewars
Chapter

Introduction

Tetrahedrane, 1, C4H4 or (CH)4 is interesting for at least four reasons:

(1) Esthetic considerations: it is the molecular counterpart of the simplest of the five platonic solids, the tetrahedron, the octahedron, the cube or hexahedron, the icosahedron, and the dodecahedron. 1 The (hydro)carbon counterparts of these geometric figures are:

Keywords

Ionization Energy Potential Energy Surface Kinetic Stability Trimethylsilyl Group Platonic Solid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K. C. Thompson, D. L. Crittenden, M. J. T. Jordan, J. Am. Chem. Soc., 2005, 127, 4954.CrossRefGoogle Scholar
  2. 2.
    P. M. Esteves, G. G. P. Alberto, A. Ramírez-Solís, C. J. A. Mota, J. Am. Chem. Soc., 1999, 121, 7345.CrossRefGoogle Scholar
  3. 3.
    R. N. Grimes, “Advanced Inorganic Chemistry”, F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann, eds., Wiley, New York, 1999; Chapter 5.Google Scholar
  4. 4.
    P. E. Eaton, T. W. Cole, Jr., J. Am. Chem. Soc., 1964, 86, 962.CrossRefGoogle Scholar
  5. 5.
    P. E. Eaton, T. W. Cole, Jr., J. Am. Chem. Soc., 1964, 86, 3157.CrossRefGoogle Scholar
  6. 6.
    J. C. Barborak, L. Watts, R. Pettit, J. Am. Chem. Soc., 1966, 88, 1328.CrossRefGoogle Scholar
  7. 7.
    R. J. Ternansky, D. W. Balogh, L. A. Paquette, J. Am. Chem. Soc., 1982, 104, 4503.CrossRefGoogle Scholar
  8. 8.
    L. A. Paquette, R. J. Ternansky, D. W. Balogh, G. Kentgen, J. Am. Chem. Soc., 1983, 105, 5446.CrossRefGoogle Scholar
  9. 9.
    H. Hopf, “Classics in Hydrocarbon Chemistry”, Wiley-VCH, Weinheim, New York, 2000; pp. 63–75.Google Scholar
  10. 10.
    W. Grahn, Chemie in unserer Zeit, 1981, 15, 52.CrossRefGoogle Scholar
  11. 11.
    A. v. Baeyer, Chem. Ber., 1885, 18, 2269.CrossRefGoogle Scholar
  12. 12.
    R. M. Beesley, J. F. Thorpe, Proc. Chem. Soc., 1913, 29, 346.Google Scholar
  13. 13.
    R. M. Beesley, J. F. Thorpe, J. Chem. Soc., 1920, 117, 591.Google Scholar
  14. 14.
    K. B. Wiberg, Acc. Chem. Res., 1996, 29, 229.CrossRefGoogle Scholar
  15. 15.
    H. O. Larson , R. B. Woodward, Chem. Ind., 1959, 193.Google Scholar
  16. 16.
    H. O. Larson, Ph.D. Thesis, “Part I: A reinvestigation of Thorpe's synthesis of bicyclobutane derivatives. Part II: The synthesis of ,8-dimethyl-1,2-cyclopentenophenanthrene.” Harvard, 1950.Google Scholar
  17. 17.
    M. B. Goren, E. A. Sokoloski, H. M. Fales, J. Org. Chem., 2005, 70, 7429.CrossRefGoogle Scholar
  18. 18.
    G. Maier, S. Pfriem, U. Schäfer, R. Matusch, Ang. Chem. Int. Ed., 1978, 17, 520.CrossRefGoogle Scholar
  19. 19.
    G. Maier, S. Pfriem, U. Schäfer, K.-D. Malsch, R. Matusch, Chem. Ber., 1981, 114, 3965.CrossRefGoogle Scholar
  20. 20.
    H. Irngartinger, M. Riegler, K.-D. Malsch, K.-A. Schneider, G. Maier, Angew. Chem. Int. Ed. Engl., 1980, 19, 211.CrossRefGoogle Scholar
  21. 21.
    E. Heilbronner, T. B. Jones, A. Krebs, G. Maier, K.-D. Malsch, J. Rocklington, R. Schmelzer, J. Am. Chem. Soc., 1980, 102, 564.CrossRefGoogle Scholar
  22. 22.
    G. Maier, Angew. Chem. Int. Ed. Engl., 1988, 27, 309.CrossRefGoogle Scholar
  23. 23.
    H. Irngartinger, A. Goldmann, R. Jahn, M. Nixdorf, H. Rodewald, G. Maier, K.-D. Malsch, R. Emrich, Angew. Chem. Int. Ed. Engl., 1984, 23, 993.CrossRefGoogle Scholar
  24. 24.
    M. Balci, M. L. McKee, P. v. R. Schleyer, J. Phys. Chem. A, 2000, 104, 1246.CrossRefGoogle Scholar
  25. 25.
    G. Maier , H. Rang, R. Emrich, Liebigs Ann. Chem., 1995, (1), 153.Google Scholar
  26. 26.
    G. Maier , F. Fleischer, Liebigs Ann. Chem., 1995, (1), 169.Google Scholar
  27. 27.
    G. Maier, F. Fleischer, Tetrahedron Lett., 1991, 32, 57.CrossRefGoogle Scholar
  28. 28.
    H. Hopf, “Classics in Hydrocarbon Chemistry”, Wiley-VCH, Weinheim, New York, 2000; pp. 54–60.Google Scholar
  29. 29.
    H. Hopf, “Classics in Hydrocarbon Chemistry”, Wiley-VCH, Weinheim, New York, 2000; p. 76, ref. 12.Google Scholar
  30. 30.
    N. C. Baird, M. J. S. Dewar, J. Am. Chem. Soc., 1967, 89, 3966.CrossRefGoogle Scholar
  31. 31.
    N. C. Baird, Tetrahedron, 1970, 26, 2185.CrossRefGoogle Scholar
  32. 32.
    G. Maier, J. Neudert, O. Wolf, Angew. Chem. Int. Ed. Engl., 2001, 40, 1674.CrossRefGoogle Scholar
  33. 33.
    G. Maier, J. Neudert, O. Wolf, D. Pappusch, A. Sekiguchi, M. Tanaka, T. Matsuo, J. Am. Chem. Soc., 2002, 124, 13819.CrossRefGoogle Scholar
  34. 34.
    A. Sekiguchi, M. Tanaka, T. Matsuo, H. Watanabe, Angew. Chem. Int. Ed. Engl., 2001, 40, 1675.CrossRefGoogle Scholar
  35. 35.
    J. D. Dill, A. Greenberg, J. F. Liebman, J. Am. Chem. Soc., 1979, 101, 6814.CrossRefGoogle Scholar
  36. 36.
    T. Clark, G. W. Spitznagel, R. Klose, P. v. R. Schleyer, J. Am. Chem. Soc., 1984, 106, 4412.CrossRefGoogle Scholar
  37. 37.
    D. Cremer, E. Kraka, J. Am. Chem. Soc., 1985, 107, 3811.CrossRefGoogle Scholar
  38. 38.
    G. Maier, D. Born, Angew. Chem. Int. Ed. Engl., 1989, 28, 1050.CrossRefGoogle Scholar
  39. 39.
    D. A. Ponomarev, V. V. Takhistov, J. Chem. Ed., 1997, 74, 201.CrossRefGoogle Scholar
  40. 40.
    M. K. Cyranski, Chem. Rev., 2005, 105, 3773.CrossRefGoogle Scholar
  41. 41.
    A. Sekiguchi, M. Tanaka, J. Am. Chem. Soc., 2003, 125, 12684.CrossRefGoogle Scholar
  42. 42.
    M. Tanaka, A. Sekiguchi, Angew. Chem. Int. Ed. Engl., 2005, 44, 5821.CrossRefGoogle Scholar
  43. 43.
    E. Lewars, “Computational Chemistry”, Kluwer, Boston, 2003; section 7.3.1.Google Scholar
  44. 44.
    E. Lewars, “Computational Chemistry”, Kluwer, Boston, 2003; Chapter 2.Google Scholar
  45. 45.
    G. Vacek, J. M. Galbraith, Y. Yamaguchi, H. F. Schaefer, R. H. Nobes, A. P. Scott, L. Radom, J. Phys. Chem., 1994, 98, 8660.CrossRefGoogle Scholar
  46. 46.
    G. Vacek, B. T. Colegrove, H. F. Schaefer, Chem. Phys. Lett., 1991, 177, 468.CrossRefGoogle Scholar
  47. 47.
    E. Lewars, “Computational Chemistry”, Kluwer, Boston, 2003; Chapters 5 and 7.Google Scholar
  48. 48.
    A. I. Boldyrev, P. v. R. Schleyer, D. Higgins, C. Thomson, S. S. Kramarenk, J. Comp. Chem., 1992, 9, 1066.CrossRefGoogle Scholar
  49. 49.
    E. Lewars, “Computational Chemistry”, Kluwer, Boston, 2003; section 5.5.2.3a.Google Scholar
  50. 50.
    R. S. Sheridan, Org. Photochem., 1987, 8, 159.Google Scholar
  51. 51.
    J. M. Martell, P. T. Beaton, B. E. Holmes, J. Phys. Chem. A, 2002, 106, 8471.CrossRefGoogle Scholar
  52. 52.
    M. P. McGrath, F. S. Rowland, J. Phys. Chem. A, 2002, 106, 8191.CrossRefGoogle Scholar
  53. 53.
    R. Engelke, J. Am. Chem. Soc., 1993, 115, 2961.CrossRefGoogle Scholar
  54. 54.
    R. Engelke, J. Org. Chem., 1992, 57, 4841.CrossRefGoogle Scholar
  55. 55.
    R. Engelke, J. Phys. Chem., 1992, 96, 10789.CrossRefGoogle Scholar
  56. 56.
    R. Engelke, J. R. Stine, J. Phys. Chem., 1990, 94, 5689.CrossRefGoogle Scholar
  57. 57.
    R. Engelke, J. Phys. Chem., 1989, 93, 5772.CrossRefGoogle Scholar
  58. 58.
    H. Hopf, “Classics in Hydrocarbon Chemistry”, Wiley-VCH, Weinheim, New York, 2000; Chapter 3.Google Scholar
  59. 59.
    H. Kollmar, J. Am. Chem. Soc., 1980, 102, 2617.CrossRefGoogle Scholar
  60. 60.
    J. B. Foresman, A. Frisch, “Exploring Chemistry with Electronic Structure Methods”, Second Edn., Gaussian Inc., Pittsburgh, 1996; Chapter 8.Google Scholar
  61. 61.
    J. B. Foresman, A. Frisch, “Exploring Chemistry with Electronic Structure Methods”, Second Edn., Gaussian Inc., Pittsburgh, 1996; Chapter 9.Google Scholar
  62. 62.
    A. Nemirowski, H. P. Reisenauer, P. R. Schreiner, Chem. Eur. J., 2006, 12, 7411.CrossRefGoogle Scholar
  63. 63.
    A. Baeyer, Ber., 1885, 18, 2269.CrossRefGoogle Scholar
  64. 64.
    M. B. Smith, K. March, “March’s Advanced Organic Chemistry”, Wiley, New York, 2001; pp. 180–191.Google Scholar
  65. 65.
    E. Lewars, J. Mol. Struct. (Theochem), 2000, 507, 165.CrossRefGoogle Scholar
  66. 66.
    V. Balaji, J. Michl, Pure Appl. Chem., 1988, 60, 189.CrossRefGoogle Scholar
  67. 67.
    K. B. Wiberg, R. F. W. Bader, C. D. H. Lau, J. Am. Chem. Soc., 1987, 109, 985.CrossRefGoogle Scholar
  68. 68.
    H. Hopf, “Classics in Hydrocarbon Chemistry”, Wiley-VCH, Weinheim, New York, 2000; p. 76, Ref. 9.Google Scholar
  69. 69.
    T. Koopmans, Physica, 1934, 1, 104.CrossRefGoogle Scholar
  70. 70.
    Z. B. Maksic, R. Vianello, J. Phys. Chem., 2002, 106, 6515.Google Scholar
  71. 71.
    C. Angeli, J. Chem. Educ., 1998, 75, 1494.CrossRefGoogle Scholar
  72. 72.
    R. Stowasser, R. Hoffmann, J. Am. Chem. Soc., 1999, 121, 3414.CrossRefGoogle Scholar
  73. 73.
    J. E. Lyons, D. R. Rasmussen, M. P. McGrath, R. H. Nobes, L. Radom, Ang. Chem. Int. Ed. Engl., 1994, 33, 1667.CrossRefGoogle Scholar
  74. 74.
    E. Lewars, “Computational Chemistry”, Kluwer, Boston, 2003; p. 313.Google Scholar
  75. 75.
  76. 76.
    P. Rademacher, Chem. Rev., 2003, 103, 933.CrossRefGoogle Scholar
  77. 77.
    J. W. Ochterski, G. A. Petersson, J. A. Montgomery, J. Chem. Phys., 1996, 104, 2598.CrossRefGoogle Scholar
  78. 78.
    I. Alkorta, J. Elguero, Tetrahedron, 1997, 53, 9741.CrossRefGoogle Scholar
  79. 79.
    F. J. Weigert, J. D. Roberts, J. Am. Chem. Soc., 1967, 89, 5962, and refs. therein.CrossRefGoogle Scholar
  80. 80.
    R. Notario , J. Elguero, J. Chem. Soc. Chem. Commun., 1995, (15), 1543.Google Scholar
  81. 81.
    R. Notario, O. Castaño, J. L. Andrés, J. Elguero, G. Maier, C. Hermann, Chem. Eur. J., 2001, 7, 342.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Errol G Lewars
    • 1
  1. 1.Trent UnversityPeterboroughCanada

Personalised recommendations