Advertisement

Helium Compounds

  • Errol G Lewars
Chapter

Introduction

Helium and its siblings, neon, argon, krypton, xenon and radon, were once called the inert gases, but with the forging of a well-documented and fairly abundant chemistry of krypton and especially xenon, the term noble appears to have displaced inert. The history [1, 2] of the unveiling1 of the dormant chemical proclivities of these heavier noble gases (radon chemistry has been less well explored, for obvious reasons) is well-documented, and will be only briefly mentioned here, along with some discussion of neon and argon. This will help to put helium chemistry in perspective. By chemical compounds we mean here real compounds, with an ionic or covalent bond. Entities in which noble gas atoms are associated with other atoms or molecules by van der Waals attraction or by mere physical incarceration were long the only, meager, some would say spurious, examples of noble gas chemistry: atom pairs (e.g. He―He, He―CH4) [3], hydrates [4, 5], and fullerenes with encapsulated atoms [

Keywords

Helium Atom Solid Helium Computational Evidence Xenon Difluoride Argon Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Dagani, Chemical and Engineering News, 2002, October 7, 27.Google Scholar
  2. 2.
    P. Ball, “Elegant Solutions”, Royal Society of Chemistry, Cambridge, UK, 2005; Chapter 8.Google Scholar
  3. 3.
    G. Calderoni, F. Cargoni, A. Famulari, M. Raimondi, J. Phys. Chem., 2002, 106, 5521, and refs. therein.CrossRefGoogle Scholar
  4. 4.
    T. Maekawa, J. Chem. Eng. Data, 2003, 48, 1283.CrossRefGoogle Scholar
  5. 5.
    B. J. Anderson, J. W. Tester, B. L. Trout, J. Phys. Chem. B, 2004, 108, 18705.CrossRefGoogle Scholar
  6. 6.
    C. M. Stansky, R. J. Cross, M. Saunders, M. Murata, Y. Murata, K. Komatsu, J. Am. Chem. Soc., 2005, 127, 299.CrossRefGoogle Scholar
  7. 7.
    G.-W. Wang, X.-H. Zhang, H. Zhan, Q.-X. Guo, Y.-D. Wu, J. Org. Chem., 2003, 68, 6732.CrossRefGoogle Scholar
  8. 8.
    T. R. Hogness, E. G. Lunn, Phys. Rev., 1925, 26, 50.Google Scholar
  9. 9.
    O. Tüxen, Z. Physik, 1936, 103, 463.Google Scholar
  10. 10.
    C. K. Jørgensen, G. Frenking, “Noble Gases and High-Temperature Chemistry, Structure and Bonding 73”, Springer-Verlag, Berlin, 1990.Google Scholar
  11. 11.
    P. Laszlo, G. J. Schrobilgen, Angew. Chem. Int. Ed. Engl., 1988, 27, 479.CrossRefGoogle Scholar
  12. 12.
    C. E. Housecroft, A. G. Sharpe, “Inorganic Chemistry”, Prentice Hall, NJ, 2005; Chapter 17.Google Scholar
  13. 13.
    F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann, “Advanced Inorganic Chemistry”, Wiley, New York, 1998; Chapter 14.Google Scholar
  14. 14.
    L. Graham, O. Graudejus, N. K. Jha, N. Bartlett, Coord. Chem. Rev., 2000, 197, 321.CrossRefGoogle Scholar
  15. 15.
    M. Pettersson, L. Khriachtchev, A. Lignell, M. Räsänen, J. Chem. Phys., 2002, 116, 2508.CrossRefGoogle Scholar
  16. 16.
    W. Kutzelnigg, Angew. Chem. Int. Ed. Engl., 1984, 23, 272.CrossRefGoogle Scholar
  17. 17.
    J. F. Lehmann, G. J. Schrobilgen, K. O. Christe, A. Kornath, R. J. Suotamo, Inorg. Chem., 2004, 43, 6905.CrossRefGoogle Scholar
  18. 18.
    S. S. Zumdahl, “Chemical Principles”, Fourth Edn., Houghton Mifflin, Boston, 2004; pp. 673–675.Google Scholar
  19. 19.
    J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kiefer, P. B. Corkum, D. M. Villeneuve, Nature, 2004, 432, 867.CrossRefGoogle Scholar
  20. 20.
    G. Frenking, D. Cremer, Structure and Bonding (Berlin, Germany), 1990, 73(Noble Gas High Temp. Chem.), 17.Google Scholar
  21. 21.
    J. F. Liebman , J. F. Allen, J. Chem. Soc., Chem. Commun., 1969, 1355.Google Scholar
  22. 22.
    C. K. Jørgensen, Z. Anorg, Allg. Chem., 1986, 549, 91.CrossRefGoogle Scholar
  23. 23.
    G. Frenking, W. Koch, C. Deakyne, J. F. Liebman, N. Bartlett, J. Am. Chem. Soc., 1989, 111, 31.CrossRefGoogle Scholar
  24. 24.
    R. F. W. Bader, “Atoms in Molecules: A Quantum Chemical Theory”, Clarendon, Oxford, UK, 1990.Google Scholar
  25. 25.
    R. F. W. Bader, P. L. A. Popelier, T. A. Keith, Angew. Chem. Int. Ed. Engl., 1994, 33, 620.CrossRefGoogle Scholar
  26. 26.
    R. G. Parr, P. W. Ayers, R. F. Nalewajski, J. Phys. Chem. A, 2005, 109, 3957.CrossRefGoogle Scholar
  27. 27.
    L. Khriachtchev, M. Pettersson, N. Runeberg, J. Lundell, M. Räsänen, Nature, 2000, 406, 874.CrossRefGoogle Scholar
  28. 28.
    L. Khriachtchev, A. Lignell, H. Tanskanen, J. Lundell, H. Kiljunen, M. Räsänen, J. Phys. Chem. A, 2006, 110, 11876.CrossRefGoogle Scholar
  29. 29.
    T.- H. Li, C.-H. Mou, H.-R. Chen, W.-P. Hu, J. Am. Chem. Soc., 2005, 127, 9241.CrossRefGoogle Scholar
  30. 30.
    M. W. Wong, J. Am. Chem. Soc., 2000, 122, 6289.CrossRefGoogle Scholar
  31. 31.
    J. Lundell, G. M. Chaban, R. B. Gerber, Chem. Phys. Lett., 2000, 331, 308.CrossRefGoogle Scholar
  32. 32.
    R. B. Gerber , Khimiya be Yisra'el, 2005, 18, 7.Google Scholar
  33. 33.
    R. B. Gerber, Annu. Rev. Phys. Chem., 2004, 55, 55.CrossRefGoogle Scholar
  34. 34.
    L. Sheng, A. Cohen, R. B. Gerber, J. Am. Chem. Soc., 2006, 128, 7156.CrossRefGoogle Scholar
  35. 35.
    G. Frenking, W. Koch, F. Reichel, D. Cremer, J. Am. Chem. Soc., 1990, 112, 4240.CrossRefGoogle Scholar
  36. 36.
    W. Koch, G. Frenking, J. Gauss, D. Cremer, J. R. Collins, J. Am. Chem. Soc., 1987, 109, 5917.CrossRefGoogle Scholar
  37. 37.
    L. Pauling, “The Nature of the Chemical Bond”, Third Edn., Cornell University Press, Ithaca, New York, 1960; Chapter 5.Google Scholar
  38. 38.
    F. R. Carey, R. J. Sundberg, “Advanced Organic Chemistry. Part A”, Kluwer, New York, 2000; p. 14.Google Scholar
  39. 39.
    E. Lewars, “Computational Chemistry”, Kluwer, Boston, 2003; Chapter 7.Google Scholar
  40. 40.
    I. N. Levine, “Quantum Chemistry”, Fifth Edn., Prentice Hall, Engelwood Cliffs, NJ, 2000; sections 15.19, 17.1, 17.2.Google Scholar
  41. 41.
    L. C. Cusachs, P. Politzer, Chem. Phys., 1968, 1, 529.Google Scholar
  42. 42.
    A. H. Snell, F. Pleasonton, J. Phys. Chem., 1958, 62, 1377.CrossRefGoogle Scholar
  43. 43.
    S. Young, M. J. Coggiola, Int. J. Mass Spectrom. Ion Proc., 1986, 74, 137.Google Scholar
  44. 44.
    M. B. Smith, J. March, “March’s Advanced Organic Chemistry”, Wiley, New York, 2001; pp. 219–225.Google Scholar
  45. 45.
    G.-W. Wang, X.-H. Zhang, H. Zhan, Q.-X. Guo, Y.-D. Wu, J. Org. Chem., 2003, 68, 6732.CrossRefGoogle Scholar
  46. 46.
    D. D. DesMarteau, Science, 2000, 289, 72.CrossRefGoogle Scholar
  47. 47.
    C. A. Reed, K.-C. Kim, R. D. Bolskar, L. J. Mueller, Science, 2000, 289, 101.CrossRefGoogle Scholar
  48. 48.
    A. Krapp, G. Frenking, Chem. Eur. J., 2007, 13, 8256.Google Scholar
  49. 49.
    R. J. Hemley, H.-K. Mao, G. Shen, J. Badro, P. Gillet, M. Hanfland, D. Häusermann, Science, 1997, 276, 1242, and refs. therein.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Errol G Lewars
    • 1
  1. 1.Trent UnversityPeterboroughCanada

Personalised recommendations