Nitrogen Pentafluoride and Related Compounds

  • Errol G Lewars


Between nitrogen pentafluoride and related species, and the helium compounds of Chapter 5, there is is a curious link, beyond the fact that both species are experimentally unknown: the two classes appear to violate a cherished valence rule. The octet rule, which supposedly summarizes the appetite for electrons of atoms of the first full row of the periodic table (“first-row atoms” to computational chemists), decrees that the elements from lithium to neon cannot have more than eight electrons in their valence shells. Hydrogen and helium might be said to be subject to an analogous, duplet, rule, stating that their valence shells are limited to two electrons. Yet plausible computations indicate that compounds can exist which appear to defy these rules. In this chapter we examine molecules in which nitrogen and some nearby elements formally violate the octet rule, and consider whether this transgression is real.

Molecules that seem to violate the octet (or duplet) rule are hypercoordinate...


Atomic Orbital Imaginary Frequency Valence Shell Axial Bond Octet Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Morris, “The Last Sorcerers: The Path from Alchemy to the Periodic Table”, Joseph Henry Press, Washington, DC, 2003.Google Scholar
  2. 2.
    W. B. Jensen, J. Chem. Educ., 1984, 61, 191.CrossRefGoogle Scholar
  3. 3.
    R. Abegg, Zeitschrift für anorganische Chemie, 1904, 39, 330.CrossRefGoogle Scholar
  4. 4.
    G. N. Lewis, J. Am. Chem. Soc., 1916, 38, 762.CrossRefGoogle Scholar
  5. 5.
    G. N. Lewis, “Valence and the Structure of Atoms and Molecules”, The Chemical Catalog Company Inc., 1923 (Dover reprint with “Introduction” by K. S. Pitzer, Dover, New York, 1966).Google Scholar
  6. 6.
    E. Scerri, “The Periodic Table: Its Development and Significance”, Oxford University Press, Oxford, 2007; Chapter 8.Google Scholar
  7. 7.
    W. Kossel, Ann. Phys., 1916, 49, 229.CrossRefGoogle Scholar
  8. 8.
    I. Langmuir, Am. Chem. Soc., 1919, 41, 868.CrossRefGoogle Scholar
  9. 9.
    A. N. Stranges, “Electrons and Valence”, Texas A&M University Press, TX, 1982.Google Scholar
  10. 10.
    K.-y. Akiba, ed., “Hypervalent Compounds”, Wiley, New York, 1998.Google Scholar
  11. 11.
    E. Lewars, “Computational Chemistry”, Kluwer, Boston, 2003; pp. 96–101.Google Scholar
  12. 12.
    L. Pauling, “The Nature of the Chemical Bond”, Cornell University Press, Third Edn., 1960; Chapter 5.Google Scholar
  13. 13.
    J. K. Burdett, “Chemical Bonds. A Dialog”, Wiley, New York, 1997.Google Scholar
  14. 14.
    E. Lewars, “Computational Chemistry”, Kluwer, Boston, 2003, section 4.3.Google Scholar
  15. 15.
    A. Rauk, “Orbital Interaction Theory of Organic Chemistry”, Wiley, New York, 2001.Google Scholar
  16. 16.
    J. D. Roberts, “Notes on Molecular Orbital Calculations”, W. A. Benjamin, New York, 1961.Google Scholar
  17. 17.
    Computational Chemistry List (CCL),, archives for 2005, February–May.
  18. 18.
    J. G. Malm, H. Selig, J. Jortner, S. A. Rice, Chem. Rev., 1965, 65, 199.CrossRefGoogle Scholar
  19. 19.
    H. F. Bettinger, P. v. R. Schleyer, H. F. Schaefer, J. Am. Chem. Soc., 1998, 120, 11439.CrossRefGoogle Scholar
  20. 20.
    T. A. Halgren, L. D. Brown, D. A. Kleier, W. N. Lipscomb, J. Am. Chem. Soc., 1977, 99, 6793.CrossRefGoogle Scholar
  21. 21.
    K. Raghavachari, J. B. Anderson, J. Chem. Phys., 1996, 100, 12960.CrossRefGoogle Scholar
  22. 22.
    M. Head-Gordon, J. Chem. Phys., 1996, 100, 13213.CrossRefGoogle Scholar
  23. 23.
    D. Feller, K. A. Peterson, J. Chem. Phys., 1998, 108, 154.CrossRefGoogle Scholar
  24. 24.
    M. B. Smith, J. March, “Advanced Organic Chemistry”, Wiley, New York, 2001; pp. 15–24 and refs. therein.Google Scholar
  25. 25.
    C. S. Ewig, J. R. van Wazer, J. Am. Chem. Soc., 1990, 112, 109.CrossRefGoogle Scholar
  26. 26.
    C. S. Ewig, J. R. van Wazer, J. Am. Chem. Soc., 1989, 111, 4172.CrossRefGoogle Scholar
  27. 27.
    C. S. Ewig, J. R. van Wazer, J. Am. Chem. Soc., 1989, 111, 1552.CrossRefGoogle Scholar
  28. 28.
    H. H. Michels, J. A. Montgomery, J. Chem. Phys., 1990, 83, 1805.CrossRefGoogle Scholar
  29. 29.
    R. S. Sheridan, Org. Photochem., 1987, 8, 159.Google Scholar
  30. 30.
    A. R. Miller, R. R. Tsukimura, R. Velten, Science, 1967, 155, 688.Google Scholar
  31. 31.
    C. T. Goetschel, V. A. Campanile, R. M. Curtis, K. R. Loos, C. D. Wagner, J. N. Wilson, Inorg. Chem., 1972, 11, 1696.CrossRefGoogle Scholar
  32. 32.
    K. O. Christe, C. J. Schack, R. D. Wilson, Inorg. Chem., 1976, 15, 1275.CrossRefGoogle Scholar
  33. 33.
    I. J. Solomon, J. N. Keith, A. Snelson, J. Fluorine Chem., 1972/73, 2, 129.CrossRefGoogle Scholar
  34. 34.
    K. O. Christe, R. D. Wilson, I. B. Goldberg, Inorg. Chem., 1979, 18, 2572.CrossRefGoogle Scholar
  35. 35.
    J. N. Keith, I. J. Solomon, I. Sheft, H. Hyman, Inorg. Nucl. Chem. - Herbert H. Hyman Mem. Vol., 1976, 143.Google Scholar
  36. 36.
    K. O. Christe, W. W. Wilson, G. J. Schrobilgen, R. V. Chitakal, G. A. Olah, Inorg. Chem., 1988, 27, 789.CrossRefGoogle Scholar
  37. 37.
    K. O. Christe, Chem. Eng. News, 1990, April, 3.Google Scholar
  38. 38.
    C. S. Ewig, J. R. van Wazer, Chem. Eng. News, 1990, April, 3.Google Scholar
  39. 39.
    K. O. Christe, W. W. Wilson, J. Am. Chem. Soc., 1992, 114, 9934.CrossRefGoogle Scholar
  40. 40.
    A. K. Rappé, E. R. Bernstein, J. Phys. Chem. A, 2000, 104, 6117.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Errol G Lewars
    • 1
  1. 1.Trent UnversityPeterboroughCanada

Personalised recommendations