Advertisement

Oxirene

  • Errol G Lewars
Chapter

Introduction

The molecules of Chapters 1 and 2 were species that defy one of the basic principles of the structural theory of organic chemistry (or at least the theory in its simplest form, based on experience, without invoking electronic theory): the valences of tetracoordinate carbon are directed toward the corners of a tetrahedron. They are molecules that, within the confines of the theory, “should” not exist. The subject of this chapter, in contrast, appears to defy no rules of the structural theory: oxirene (this is the usual name; it is based on the clumsy Hantzsch-Widman system, in which heterocyclic rings of 3, 4, etc. atoms are given special names like oxirane, oxirene, oxetane, etc. An alternative system utilizes the currently neglected logical and convenient method of replacement nomenclature: oxacyclopropane, oxacyclopropene, oxacyclobutane, etc. 1), 1, looks at first glance like a normal molecule. No unusual stereochemical constraints are imposed on the

Keywords

Potential Energy Surface Relative Minimum Matrix Isolation Norrish Type Diazo Ketone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    “Advances in Strained and Interesting Organic Molecules”, B. Halton, ed., JAI Press, Stamford, Connecticut, 2000; vol. 8.Google Scholar
  2. 2.
    W. Sander, Angew. Chem. Int. Ed. Engl., 1994, 33, 1455.CrossRefGoogle Scholar
  3. 3.
    Chem. Rev., 1989, 89(5), whole issue.Google Scholar
  4. 4.
    K. Wiberg, Angew. Chem. Int. Ed. Engl., 1986, 25, 312.CrossRefGoogle Scholar
  5. 5.
    J. F. Liebman, A. Greenberg, Chem. Rev., 1976, 76, 311.CrossRefGoogle Scholar
  6. 6.
    P. v. R. Schleyer, Chem. Rev., 2001, 101, 1115.CrossRefGoogle Scholar
  7. 7.
    A. de Meijere, R. Haag, F.-M. Schüngel, S. I. Kozhushkov, I. Emme, Pure Appl. Chem., 1999, 71, 253.CrossRefGoogle Scholar
  8. 8.
    N. Ya Dem’yanov, M. N. Doyarenko, Bull. Acad. Sci. Russ., 1922, 16, 297.Google Scholar
  9. 9.
    M. J. Dem'yanov, M. Dojarenko, Ber., 1923, 56, 2200.Google Scholar
  10. 10.
    M. J. Schlatter, J. Am. Chem. Soc., 1941, 63, 1733.CrossRefGoogle Scholar
  11. 11.
    K. B. Wiberg, W. J. Bartley, J. Am. Chem. Soc., 1960, 82, 6375.CrossRefGoogle Scholar
  12. 12.
    W. M. Stigliani, V. W. Laurie, J. C. Li, J. Chem. Phys., 1975, 62, 1890.CrossRefGoogle Scholar
  13. 13.
    R. S. Sheridan, Org. Photochem., 1987, 8, 159.Google Scholar
  14. 14.
    F. A. Carey, R. J. Sundberg, “Advanced Organic Chemistry”, Fourth Edn., Kluwer, New York, 2000; pp. 405–416.Google Scholar
  15. 15.
    E. D. Glendenning, A. E. Reed, J. E. Carpenter, F. Weinhold, J. P. Foster, NBO Version 3.1(as implemented in Gaussian 03).Google Scholar
  16. 16.
    J. P. Foster, F. Weinhold, J. Am. Chem. Soc., 1980, 102, 7211.CrossRefGoogle Scholar
  17. 17.
    A. E. Reed, F. Weinhold, J. Chem. Phys., 1983, 78, 4066.CrossRefGoogle Scholar
  18. 18.
    A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys., 1985, 83, 735.CrossRefGoogle Scholar
  19. 19.
    S. W. Staley, T. D. Norden, J. Am. Chem. Soc., 1984, 106, 3699.CrossRefGoogle Scholar
  20. 20.
    W. E. Billups, L.-J. Lin, E. W. Casserly, J. Am. Chem. Soc., 1984, 106, 3698.CrossRefGoogle Scholar
  21. 21.
    G. Maier, M. Hoppe, K. Lanz, P. Reisenauer, Tetrahedron Lett., 1984, 25, 5645.CrossRefGoogle Scholar
  22. 22.
    P. Burk, J.-L. Abboud, I. A. Koppel, J. Phys. Chem., 1996, 100, 6992and refs. 21, 22, 26, 29–33 therein.Google Scholar
  23. 23.
    E. Lewars, Chem. Rev., 1983, 83, 519.CrossRefGoogle Scholar
  24. 24.
    M. Berthelot, Bull. Soc. Chim. Fr., 1870, 14, 113.Google Scholar
  25. 25.
    W. Madelung, M. E. Oberwegner, Liebigs Ann. Chem., 1931, 490, 201.CrossRefGoogle Scholar
  26. 26.
    H. Schubach, V. Franzen, Liebigs Ann. Chem., 1952, 557, 60.Google Scholar
  27. 27.
    O. P. Strausz, I. G. Csizmadia, J. Font, J. Am. Chem. Soc., 1968, 90, 7360.CrossRefGoogle Scholar
  28. 28.
    M. Torres, E. M. Lown, H. E. Gunning, O. P. Strausz, Pure Appl. Chem., 1980, 52, 1623.CrossRefGoogle Scholar
  29. 29.
    M. Torres, J. L. Bourdelande, A. Clement, O. P. Strausz, J. Am. Chem. Soc., 1983, 105, 1698.CrossRefGoogle Scholar
  30. 30.
    G. Maier, H. P. Reisenauer, T. Sayraç, Chem. Ber., 1982, 115, 2192.CrossRefGoogle Scholar
  31. 31.
    S. A. Matlin, P. G. Sammes, J. Chem. Soc., Perkin Trans. 1, 1973, 2851.CrossRefGoogle Scholar
  32. 32.
    S. A. Matlin, P. G. Sammes, J. Chem. Soc., Perkin Trans. 1, 1972, 2623.CrossRefGoogle Scholar
  33. 33.
    S. A. Matlin, P. G. Sammes, J. Chem. Soc., Chem. Commun., 1972, (1), 11.Google Scholar
  34. 34.
    U. Timm, K.-P. Zeller, Chem. Ber., 1978, 111, 1549.CrossRefGoogle Scholar
  35. 35.
    H. Okuno, S. Kondo, Y. Izawa, J. Am. Chem. Soc., 1980, 102, 7123.CrossRefGoogle Scholar
  36. 36.
    M. A. Blaustein, J. A. Berson, Tetrahedron Lett., 1981, 22, 1081.Google Scholar
  37. 37.
    P. Concannon, J. Ciabattoni, J. Am. Chem. Soc., 1973, 95, 3284.CrossRefGoogle Scholar
  38. 38.
    E. Lewars, Chem. Rev., 1983, 83, 519, 521–525.CrossRefGoogle Scholar
  39. 39.
    K. Ibne Rasa, Y. H. Pater, J. Ciabattoni, J. O. Edwards, J. Am. Chem. Soc., 1973, 95, 7894.Google Scholar
  40. 40.
    H. Kwart, K. King, Chem. Rev., 1968, 68, 415.CrossRefGoogle Scholar
  41. 41.
    R. N. Warrener, E. E. Nunn, M. N. Paddon-Row, Aust. J. Chem., 1979, 32, 2659.CrossRefGoogle Scholar
  42. 42.
    H. Hart, J. B.-C. Jiang, M. Sasoka, J. Org. Chem., 1977, 42, 3840.CrossRefGoogle Scholar
  43. 43.
    E. G. Lewars, G. Morrison, Can. J. Chem., 1977, 55, 966.CrossRefGoogle Scholar
  44. 44.
    E. G. Lewars, G. Morrison, Can. J. Chem., 1977, 55, 975.CrossRefGoogle Scholar
  45. 45.
    F.-G. Klärner, E. Vogel, Angew. Chem., Int. Ed. Engl., 1973, 12, 840.CrossRefGoogle Scholar
  46. 46.
    H. Hart , S.-M. Chen, Tetrahedron Lett., 1975, (28), 2363.Google Scholar
  47. 47.
    R. N. Warrener, R. A. Russell, R. Y. S. Tan, Aust. J. Chem., 1981, 34, 855.CrossRefGoogle Scholar
  48. 48.
    M. Torres, A. Clement, O. P. Strausz, J. Org. Chem., 1980, 45, 2271.CrossRefGoogle Scholar
  49. 49.
    M. Torres, A. Clement, H. E. Gunning, O. P. Strausz, Nouv. J. Chem., 1979, 3, 149.Google Scholar
  50. 50.
    G. Maier, T. Sayraç, H. P. Reisenauer, Chem. Ber., 1982, 115, 2202.CrossRefGoogle Scholar
  51. 51.
    C. Herzig, J. Gasteiger, Chem. Ber., 1982, 115, 601, especially ref. 20 therein.CrossRefGoogle Scholar
  52. 52.
    R. N. McDonald, R. N. Steppel, R. C. Cousins, J. Org. Chem., 1975, 40, 1694.CrossRefGoogle Scholar
  53. 53.
    P. J. Wagner “CRC Handbook of Organic Photochemistry and Photobiology”, C. R. C., Boca Raton, FL, 1995; p. 449.Google Scholar
  54. 54.
    A. Padwa, D. Crumrine, R. Hartman, R. Layton, J. Am. Chem. Soc., 1967, 89, 4435.CrossRefGoogle Scholar
  55. 55.
    R. A. Cormier, Tetrahedron Lett., 1980, 21, 2021.Google Scholar
  56. 56.
    J. I. G. Cadogan, J. T. Sharp, M. J. Trattles, J. Chem. Soc., Chem. Commun., 1974, (21), 900.Google Scholar
  57. 57.
    H. F. Gruetzmacher, J. Huebner, Liebigs Ann. Chem., 1971, 748, 154.CrossRefGoogle Scholar
  58. 58.
    M. J. S. Dewar, C. A. Ramsden, J. Chem. Soc. Chem. Commun., 1973, (18), 688.Google Scholar
  59. 59.
    A. C. Hopkinson, J. Chem. Soc., Perkin Trans. 2, 1973, 794.Google Scholar
  60. 60.
    K. Tanaka, M. Yoshimine, J. Am. Chem. Soc., 1980, 102, 7655.CrossRefGoogle Scholar
  61. 61.
    A. Krantz, J. Chem. Soc., Chem. Commun., 1973, (18), 670.Google Scholar
  62. 62.
    E. Lewars, “Computational Chemistry”, Kluwer, Boston, 2003; p. 284.Google Scholar
  63. 63.
    W. J. Bouma, R. H. Nobes, L. Radom, C. E. Woodward, J. Org. Chem., 1982, 47, 1869.CrossRefGoogle Scholar
  64. 64.
    W. J. Bouma, P. M. W. Gill, L. Radom, Org. Mass. Spectrom., 1984, 19, 610.CrossRefGoogle Scholar
  65. 65.
    F. Turacek, D. E. Drinkwater, F. W. McLafferty, J. Am. Chem. Soc., 1991, 113, 5958.CrossRefGoogle Scholar
  66. 66.
    C. E. C. A. Hop, J. L. Holmes, J. K. Terlouw, J. Am. Chem. Soc., 1989, 111, 441.CrossRefGoogle Scholar
  67. 67.
    C. Bachmann, Y. N’Guessan, F. Debû, M. Monnier, J. Pourcin, J.-P. Aycard, H. Bodot, J. Am. Chem. Soc., 1990, 112, 7488.CrossRefGoogle Scholar
  68. 68.
    G. Vacek, J. M. Galbraith, Y. Yamaguchi, H. F. Schaefer, R. H. Nobes, A. P. Scott, L. Radom, J. Phys. Chem., 1994, 98, 8660.CrossRefGoogle Scholar
  69. 69.
    G. Vacek, B. T. Colegrove, H. F. Schaefer, Chem. Phys. Lett., 1991, 177, 468.CrossRefGoogle Scholar
  70. 70.
    A. P. Scott, R. H. Nobes, H. F. Schaefer, L. Radom, J. Am. Chem. Soc., 1994, 116, 10159.CrossRefGoogle Scholar
  71. 71.
    J. E. Fowler, J. M. Galbraith, G. Vacek, H. F. Schaefer, J. Am. Chem. Soc., 1994, 116, 9311.CrossRefGoogle Scholar
  72. 72.
    C. Delamere, C. Jakins, E. Lewars, Can. J. Chem., 2002, 80, 94.CrossRefGoogle Scholar
  73. 73.
    E. Lewars, “Computational Chemistry”, Kluwer, Boston, 2003; Chapter 2.Google Scholar
  74. 74.
    A. A. Deniz, K. S. Peters, G. J. Snyder, Science, 1999, 286, 1119.CrossRefGoogle Scholar
  75. 75.
    J. P. Toscano, M. S. Platz, V. Nicolaev, Y. Cao, M. B. Zimmt, J. Am. Chem. Soc., 1996, 118, 3527.CrossRefGoogle Scholar
  76. 76.
    J. P. Toscano, M. S. Platz, V. Nicolaev, J. Am. Chem. Soc., 1995, 117, 4712.CrossRefGoogle Scholar
  77. 77.
    K. Tanigaki, T. W. Ebbesen, J. Phys. Chem., 1989, 93, 4531.CrossRefGoogle Scholar
  78. 78.
    K. Tanigaki, T. W. Ebbesen, J. Am. Chem. Soc., 1987, 109, 5883.CrossRefGoogle Scholar
  79. 79.
    J. Andaos, Y. Chiang, C.-G. Huang, A. J. Kresge, J. C. Sciano, J. Am. Chem. Soc., 1993, 115, 10605.CrossRefGoogle Scholar
  80. 80.
    S. S. Shaik, H. B. Schlegel, S. Wolfe, “Theoretical Aspects of Physical Organic Chemistry”, Wiley, New York, 1992; pp. 73–75.Google Scholar
  81. 81.
    A. P. Scott, L. Radom, J. Phys. Chem., 1996, 100, 16502.CrossRefGoogle Scholar
  82. 82.
    J. K. Parker, S. R. Davis, J. Phys. Chem. A, 1999, 103, 7280.CrossRefGoogle Scholar
  83. 83.
    E. Lewars, J. Mol. Struct. (Theochem), 2002, 579, 155.CrossRefGoogle Scholar
  84. 84.
    A. Forni, R. Destro, Chem. Eur. J., 2003, 9, 5528.CrossRefGoogle Scholar
  85. 85.
    C. F. Bernasconi, M. Ali, J. C. Gunter, J. Am. Chem. Soc., 2003, 125, 151.CrossRefGoogle Scholar
  86. 86.
    I. Alkorta, C. Wentrup, J. Elguero, J. Mol. Struct. (Theochem), 2003, 585, 27.CrossRefGoogle Scholar
  87. 87.
    R. Benassi, C. Bertarini, E. Kleinpeter, F. Taddei, S. Thomas, J. Mol. Struct. (Theochem), 2003, 498, 201.CrossRefGoogle Scholar
  88. 88.
    E. Lewars, J. Mol. Struct. (Theochem), 1997, 391, 39.CrossRefGoogle Scholar
  89. 89.
    E. Lewars, J. Mol. Struct. (Theochem), 1996, 360, 67.CrossRefGoogle Scholar
  90. 90.
    H.-V. Wagner, G. Szeimies, J. Chandrasekhar, P. v. R. Schleyer, J. A. Pople, J. S. Binkley, J. Am. Chem. Soc., 1978, 100, 1210.CrossRefGoogle Scholar
  91. 91.
    E. Lewars, Can. J. Chem., 2000, 78, 297.CrossRefGoogle Scholar
  92. 92.
    B. S. Jursic, J. Phys. Chem. A, 1999, 103, 5773.CrossRefGoogle Scholar
  93. 93.
    Y. Girard, P. Chaquin, J. Phys. Chem. A, 2003, 107, 10462.CrossRefGoogle Scholar
  94. 94.
    D. Cremer, R. Crehuet, J. Anglada, J. Am. Chem. Soc., 2001, 123, 6127.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Errol G Lewars
    • 1
  1. 1.Trent UnversityPeterboroughCanada

Personalised recommendations