Advertisement

Pyramidal Carbon

  • Errol G Lewars
Chapter

Introduction

We saw in Chapter 1 the theoretical study of one species of distorted, nonclassical tetracoordinate carbon, namely planar carbon. The disposition of bonds in the two cases is shown in Fig. 2.1 (as well as the well-known propellane type of carbon). We begin with pyramidal CH4. Planar methane, which inaugurated Chapter 1, was initially conceived of as a square planar transition state for inversion of normal, tetrahedral methane; further study showed the required transition state to be nonplanar. Choosing pyramidal methane as the starting point for our foray into the study of this stereochemical variant of carbon, we immediately encounter a structural ambiguity that was not present in the planar case, even when we insist on a fourfold symmetry axis: the HCH angle has no obviously favored value; square planar carbon in contrast must have HCH = 90°. This dilemma can be addressed by a series of calculations on pyramidal CH4in which the HCH angle is varied; the result of this...

Keywords

Potential Energy Surface Semiempirical Method Isodesmic Reaction Planar Carbon Interelectronic Repulsion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. S. Gordon, M. W. Schmidt, J. Am. Chem. Soc., 1993, 115, 7486.CrossRefGoogle Scholar
  2. 2.
    J. A. Le Bel, Bull. Soc. Chim. France, 1893, 3, 11.Google Scholar
  3. 3.
    K. Weissenberg, Berichte, 1926, 59, 1526.Google Scholar
  4. 4.
    C. A. Russell, “The History of Valency”, Leicester University Press, Leicester, 1971; pp. 166, 167.Google Scholar
  5. 5.
    V. I. Minkin, R. M. Minyaev, I. I. Zakharov, V. I. Avdeev, Zh. Org. Khim., 1978, 14, 3.Google Scholar
  6. 6.
    V. I. Minkin, R. M. Minyaev, Zh. Org. Khim., 1979, 15, 225.Google Scholar
  7. 7.
    V. I. Minkin, R. M. Minyaev, G. A. Orlova, J. Mol. Struct. (Theochem), 1984, 110, 241.CrossRefGoogle Scholar
  8. 8.
    R. M. Minyaev, V. I. Minkin, N. S. Zefirov, Yu. A. Zhdanov, Zh. Org. Khim., 1979, 15, 2009.Google Scholar
  9. 9.
    R. M. Minyaev, V. I. Minkin, N. S. Zefirov, V. I. Natanzon, S. V. Kurbatov, Zh. Org. Khim., 1982, 18, 3.Google Scholar
  10. 10.
    E. Lewars, J. Mol. Struct. (Theochem), 2000, 507, 165.CrossRefGoogle Scholar
  11. 11.
    E. Lewars, J. Mol. Struct. (Theochem), 1998, 423, 173.CrossRefGoogle Scholar
  12. 12.
    W. E. Billups, M. M. Haley, J. Am. Chem. Soc., 1991, 113, 5084.CrossRefGoogle Scholar
  13. 13.
    J. P. Kenny, K. M. Krueger, J. C. Rienstra-Kiracofe, H. F. Schaefer, J. Phys. Chem. A, 2001, 105, 7745.CrossRefGoogle Scholar
  14. 14.
    G. Kaup, J. Boy, Ang. Chem. Int. Ed., 1997, 36, 48.CrossRefGoogle Scholar
  15. 15.
    S. Kammermeier, P. Jones, R. Herges, Ang. Chem. Int. Ed., 1997, 36, 1757.CrossRefGoogle Scholar
  16. 16.
    K. K. Baldridge, Y. Kasahara, K. Ogawa, J. S. Siegel, K. Tanaka, F. Toda, J. Am. Chem. Soc., 1998, 120, 6167.Google Scholar
  17. 17.
    I. Isea, J. Mol. Struct. (Theochem), 2001, 540, 131.CrossRefGoogle Scholar
  18. 18.
    D. R. Rasmussen, L. Radom, Chem. Eur. J., 2000, 6, 2470.CrossRefGoogle Scholar
  19. 19.
    G. A. Olah, G. K. S. Prakash, J. Sommer, “Super Acids”, Wiley, New York, 1985.Google Scholar
  20. 20.
    M. N. Glukhovtsev, R. D. Bach, S. Laiter, J. Phys. Chem., 1996, 100, 10952.CrossRefGoogle Scholar
  21. 21.
    E. D. Jemmis, P. v. R. Schleyer, J. Am. Chem. Soc., 1982, 104, 4781.CrossRefGoogle Scholar
  22. 22.
    S. Masamune, M. Saki, H. Oma, J. Am. Chem. Soc., 1972, 94, 8955.CrossRefGoogle Scholar
  23. 23.
    S. Masamune, M. Saki, H. Oma, A. Jones, J. Am. Chem. Soc., 1972, 94, 8956.CrossRefGoogle Scholar
  24. 24.
    H. Hart, M. Kuzya, J. Am. Chem. Soc., 1972, 94, 8958.CrossRefGoogle Scholar
  25. 25.
    F. A. Carey, R. J. Sundberg, “Advanced Organic Chemistry”, Fourth Edn., Kluwer, New York, 2000; pp. 4–8.Google Scholar
  26. 26.
    F. A. Carey, R. J. Sundberg, “Advanced Organic Chemistry”, Fourth Edn., Kluwer, New York, 2000; pp. 405–416.Google Scholar
  27. 27.
    K. B. Wiberg, Acc. Chem. Res., 1999, 32, 922.CrossRefGoogle Scholar
  28. 28.
  29. 29.
    L. A. Curtis, K. Raghavachari, G. W. Trucks, J. A. Pople, J. Chem. Phys., 1991, 94, 7221.CrossRefGoogle Scholar
  30. 30.
    E. Lewars, “Computational Chemistry”, Kluwer, Boston, 2003; section 5.5.2.3.Google Scholar
  31. 31.
    V. Balaji, J. Michl, Pure Appl. Chem., 1988, 60, 189.CrossRefGoogle Scholar
  32. 32.
    M. P. McGrath, L. Radom, H. F. Schaefer, J. Org. Chem., 1992, 57, 4847.CrossRefGoogle Scholar
  33. 33.
    G. W. Griffin, A. P. Marchand, Chem. Rev., 1989, 89, 997.CrossRefGoogle Scholar
  34. 34.
    H. Dodziuk, J. Leszczyński, K. S. Nowiński, J. Org. Chem., 1995, 60, 6860, and refs. therein.CrossRefGoogle Scholar
  35. 35.
    L. Radom, D. R. Rasmussen, Pure and Appl. Chem., 1998, 70, 1977.CrossRefGoogle Scholar
  36. 36.
    D. R. Rasmussen, L. Radom, Angew. Chem. Int. Ed. Engl., 1999, 38, 2875.CrossRefGoogle Scholar
  37. 37.
    P. Dowd, H. Irngartinger, Chem. Rev., 1989, 89, 885.CrossRefGoogle Scholar
  38. 38.
    M. B. Smith, K. March, “March’s Advanced Organic Chemistry”, Wiley, New York, 2001; p. 789.Google Scholar
  39. 39.
    M. B. Smith, K. March, “March’s Advanced Organic Chemistry”, Wiley, New York, 2001; p. 1519.Google Scholar
  40. 40.
    W. Kirmse, “Carbene Chemistry”, Academic Press, New York, 1971.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Errol G Lewars
    • 1
  1. 1.Trent UnversityPeterboroughCanada

Personalised recommendations