Advertisement

Oligomers and Polymers of Carbon Dioxide and CO2/N2

  • Errol G Lewars
Chapter

Introduction

In Chapter 10 we considered oligomers and polymers of dinitrogen. Here we finish our look at covalent aggregates of small, stable molecules by examining dimers, trimers etc. of carbon dioxide and of carbon dioxide with dinitrogen. We will consider primarily the molecules shown in Figs. 11.1 and 11.2. These species are interesting in themselves, because of their structural novelty; they are also interesting in comparison with the nitrogen compounds of Chapter 10, with regard to investigating the effect of replacing ―N=N― units by ―C(=O)O―. Like the N 2 allotropes of Chapter 10, these putative compounds are based wholly or partly on another small, common, stable molecule, CO 2. Unlike the all-nitrogen compounds they do not seem to have been examined explicitly as potential high-energy density materials. Some carbon oxides which are not stoichiometrically CO 2 oligomers will also be peripherally mentioned.

Keywords

Reaction Energy Relative Minimum Cyclic Transition State Real Molecule Imaginary Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Lewars, J. Mol. Struct. (Theochem), 1996, 363, 1.CrossRefGoogle Scholar
  2. 2.
    A. P. Scott, L. Radom, J Phys Chem, 1986, 100, 16502.CrossRefGoogle Scholar
  3. 3.
    W. J. Hehre, “Practical Strategies for Electronic Structure Calculations”, Wavefunction, Inc., Irvine, CA, 1995; chapter 4.Google Scholar
  4. 4.
    J. W. Ochterski, G. A. Petersson, J. A. Montgomery Jr., J. Chem. Phys., 1996, 104, 2598; J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys., 2000, 112, 6532.Google Scholar
  5. 5.
    L. A. Curtiss, K. P. Redfern, J. Pople, J. Chem. Phys., 2000, 112, 7374.CrossRefGoogle Scholar
  6. 6.
    R. S. Sheridan, Org. Photochem., 1987, 8, 159.Google Scholar
  7. 7.
    P. Pyykko, Chem. Commun., J. Chem. Soc., Chem. Commun., 1999, 6, 495.Google Scholar
  8. 8.
    G. Frapper, J.-Y. Saillard, J. Am. Chem. Soc., 2000, 122, 5367.CrossRefGoogle Scholar
  9. 9.
    M. J. Mayor-López, J. Weber, H. P. Lüthi, K. Hegetschweiler, J. Mol. Model., 2000, 6, 55.CrossRefGoogle Scholar
  10. 10.
    N. Bodor, M.-J. Huang, Chem. Phys. Lett., 1992, 192, 386.CrossRefGoogle Scholar
  11. 11.
    H. F. Cordes, H. P. Richter, C. A. Heller, J. Am. Chem. Soc., 1969, 91, 7209.CrossRefGoogle Scholar
  12. 12.
    R. Bos, N. W. Barnett, G. A. Dyson, K. F. Lim, R. A. Russell, S. P. Watson, Anal. Chim. Acta, 2004, 502, 141.CrossRefGoogle Scholar
  13. 13.
    A. Gambi, A. G. Gimanini, P. Strazzolini, J. Mol. Struct. (Theochem), 2001, 536, 9.CrossRefGoogle Scholar
  14. 14.
    B. M. Elliot, A. I. Boldyrev, J. Phys. Chem. A., 2005, 109, 3722.CrossRefGoogle Scholar
  15. 15.
    N. G. Moll, D. R. Clutter, W. E. Thompson, J. Phys. Chem., 1966, 45, 4469.CrossRefGoogle Scholar
  16. 16.
    E. Weissberger, W. H. Breckenridge, H. Taube, J. Chem. Phys., 1967, 47, 1764.CrossRefGoogle Scholar
  17. 17.
    M. E. Jacox, D. E. Milligan, J. Chem. Phys., 1971, 54, 919.CrossRefGoogle Scholar
  18. 18.
    R. D. J. Froese, J. D. Goddard, J. Phys. Chem., 1993, 97, 7484.CrossRefGoogle Scholar
  19. 19.
    D. Strelnikov, W. Krätschmer, J. Phys. Chem. A, 2006, 110, 12395.CrossRefGoogle Scholar
  20. 20.
    A. S. Averyanov, Y. Khait, Y. V. Puzanov, J. Mol. Struct. (Theochem), 1996, 367, 87.CrossRefGoogle Scholar
  21. 21.
    F. Cacace, G. D. Petris, M. Rosi, Angew. Chem. Int. Ed. Engl., 2003, 42, 2985.CrossRefGoogle Scholar
  22. 22.
    P. W. Fowler, M. Lillington, J. Chem. Inf. Model., 2007, 47, 905, and references therein.CrossRefGoogle Scholar
  23. 23.
    H. Butenschön, Angew. Chem. Int. Ed. Engl., 2007, 46, 4012; T. Hamura, Y. Ibusuki, H. Uekusa, T. Matsumoto, J. S. Siegel, K. K. Baldridge, K. Suzuki, J. Am. Chem. Soc., 2006, 128, 10032.Google Scholar
  24. 24.
    V. Iota, C. S. Yoo, H. Cynn, Science, 1999, 283, 1510.Google Scholar
  25. 25.
    M. Santoro, A. F. Gorelli, R. Bini, G. Ruocco, S. Scandolo, W. A. Crichton, Nature, 2006, 441, 857.Google Scholar
  26. 26.
    N. Bodor, P. Buchwald, Chem. Phys. Lett., 2000, 319, 645.CrossRefGoogle Scholar
  27. 27.
    S. Sera, C. Cavazzoni, G. L. Chiarotti, S. Scandolo, E. Tosatti, Science, 1999, 284, 788.Google Scholar
  28. 28.
    J. Bylykbashi, E. Lewars, J. Mol. Struct. (Theochem), 1999, 468, 77.CrossRefGoogle Scholar
  29. 29.
    W. H. Jones, J. Phys. Chem., 1992, 96, 5184.CrossRefGoogle Scholar
  30. 30.
    W. H. Jones, J. Phys. Chem., 1992, 96, 594.CrossRefGoogle Scholar
  31. 31.
    W. H. Jones, J. Mol. Struct. (Theochem), 1993, 103, 299.CrossRefGoogle Scholar
  32. 32.
    W. H. Jones, I. G. Csizmadia, Zeitschrift für Physik D, 1994, 32(½), 145.Google Scholar
  33. 33.
    J. Fabian, E. Lewars, Can. J. Chem., 2004, 82, 50.CrossRefGoogle Scholar
  34. 34.
    A. A. Korkin, J. Leszczynski, R. J. Bartlett, J. Phys. Chem., 1996, 100, 19840.CrossRefGoogle Scholar
  35. 35.
    A. A. Korkin, A. Lowrey, J. Leszczynski, J. Lempert, R. J. Bartlett, J. Phys. Chem. A, 1997, 101, 2709.CrossRefGoogle Scholar
  36. 36.
    M. C. Lin, Y. He, C. F. Melius, J. Phys. Chem., 1993, 97, 9124.CrossRefGoogle Scholar
  37. 37.
    X. Zeng, M. Ge, Z. Sun, D. Wang, Inorg. Chem., 2005, 44, 9283.CrossRefGoogle Scholar
  38. 38.
    M. Malagoli, J. Baker, J. Chem. Phys., 2003, 119, 12763.CrossRefGoogle Scholar
  39. 39.
    S. H. Strauss, Chemtracts, 2000, 13, 145–151.Google Scholar
  40. 40.
    E. C. Meurer, R. Sparrapan, D. M. Tomazela, M. N. Eberlin, R. Augusti, J. Am. Soc. Mass Spectrom., 2005, 16, 1602.CrossRefGoogle Scholar
  41. 41.
    F. Turecek, Collect. Czech. Chem. Commun., 2001, 66, 1038.CrossRefGoogle Scholar
  42. 42.
    J. Demaison, A. G. Császár, A. Dehayem-Kamadjen, J. Phys. Chem. A, 2006, 110, 13609.CrossRefGoogle Scholar
  43. 43.
    M. Wolf, D. L. Yang, J. L. Durant, J. Phys. Chem. A, 1997, 101, 6243.CrossRefGoogle Scholar
  44. 44.
    D. N. Shin, M. Freindorf, T. R. Furlani, R. L. DeLeon, J. V. Garvey, Int. J. Mass Spectrom., 2006, 255–256, 28.Google Scholar
  45. 45.
    L. Ludwig, A. Kornath, Angew. Chem. Int. Ed. Engl., 2000, 39, 1421.CrossRefGoogle Scholar
  46. 46.
    J. A. Tossell, Inorg. Chem., 2006, 45, 5961.CrossRefGoogle Scholar
  47. 47.
    P. Ballone, B. Montanari, R. O. Jones, J. Chem. Phys., 2000, 112, 6571.CrossRefGoogle Scholar
  48. 48.
    Z. Selinge, Y. Lapidot, J Lipid Res, 1966, 7, 174.Google Scholar
  49. 49.
    C. R. Wellman, J. R. Ward, L. P. Kuhn, J. Am. Chem. Soc., 1976, 98, 1683, and references therein (reference 8 here should say page 7647, not 7674).CrossRefGoogle Scholar
  50. 50.
    I. A. Latham, G. J. Leigh, J. Chem. Soc. Dalton Trans., 1986, 399.Google Scholar
  51. 51.
    J. J. Reily, D. J. Duncan, T. P. Wunz, R. A. Parsiga, J. Org. Chem., 1974, 39, 3291, and references therein.CrossRefGoogle Scholar
  52. 52.
    J. P. Snyder, L. Lee, V. T. Bandurco, C. Y. Yu, R. J. Boyd, J. Am. Chem. Soc., 1972, 94, 3260.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Errol G Lewars
    • 1
  1. 1.Trent UnversityPeterboroughCanada

Personalised recommendations