Advertisement

Nitrogen Oligomers and Polymers: Superfuels or Chimeras?

  • Errol G Lewars
Chapter

Introduction

In Chapter 9 we considered a dimer of the small, stable molecule carbon monoxide. Here we examine a class of molecules which represents the concatenation of two or more small, stable molecules, namely dinitrogen (actually, we shall also examine some species with an odd number of nitrogen atoms); examples are 14:

Keywords

Potential Energy Surface Flash Photolysis Relative Minimum Ceric Ammonium Nitrate Photolysis Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. E. Douglas, W. J. Jones, Can. J. Phys., 1965, 43, 2216.Google Scholar
  2. 2.
    J. M. Dyke, N. B. H. Jonathan, A. E. Lewis, A. Morris, Mol. Phys., 1982, 47, 1231.Google Scholar
  3. 3.
    J. P. Zheng, J. Waluk, J. Spanget-Larson, D. M. Blake, J. G. Radziszewski, Chem. Phys. Lett., 2000, 328, 227.Google Scholar
  4. 4.
    T. J. Lee, J. M. L. Martin, Chem. Phys. Lett, 2002, 357, 319.Google Scholar
  5. 5.
    M. T. Nguyen, T. L. Nguyen, A. M. Mebel, R. Flammang, J. Phys. Chem. A, 2003, 107, 5452.Google Scholar
  6. 6.
    F. Cacace, G. de Petris, A. Troiani, Science, 2002, 295, 480.Google Scholar
  7. 7.
    F. Cacace, Chem. Eur. J., 2002, 8, 3838.Google Scholar
  8. 8.
    E. E. Rennie, P. M. Mayer, J. Chem. Phys., 2004, 120, 10561.Google Scholar
  9. 9.
    J. Barber, D. E. Hof, C. A. Meserole, D. J. Funk, J. Phys. Chem. A, 2006, 110, 3853.Google Scholar
  10. 10.
    H. Ostmark, O. Launila, S. Wallin, R. Tryman, J. Raman, Spec., 2001, 32, 195.Google Scholar
  11. 11.
    E. Hayon, M. Simic, J. Am. Chem. Soc., 1970, 92, 7486.Google Scholar
  12. 12.
    V. Plzak, H. Wendt, Ber. Bunsenges. Physik. Chem., 1979, 83, 481.Google Scholar
  13. 13.
    A. Vogler, R. E. Wright, H. Kunkley, Angew. Chem. Int. Ed. Engl., 1980, 19, 717.Google Scholar
  14. 14.
    J. S. Wright, J. Am. Chem. Soc., 1974, 96, 4753.Google Scholar
  15. 15.
    J. S. Wright, Theor. Chim. Acta, 1974, 36, 37.Google Scholar
  16. 16.
    G. V. Chertihin, L. Andrews, C. W. Bauschlicher, J. Am. Chem. Soc., 1998, 120, 3205.Google Scholar
  17. 17.
    L. Gagliardi, P. Pyykkö, J. Am. Chem. Soc., 2001, 123, 9700.Google Scholar
  18. 18.
    K. O. Christe, W. W. Wilson, J. A. Sheehy, J. A. Boatz, Angew. Chem. Int. Ed. Engl., 1999, 38, 2004.Google Scholar
  19. 19.
    A. Vij, W. W. Wilson, V. Vij, F. S. Tham, J. A. Sheehy, K. O. Christe, J. Am. Chem. Soc., 2001, 123, 6308.Google Scholar
  20. 20.
    R. Haiges, S. Sneider, T. Schroer, K. O Christe, Angew. Chem. Int. Ed. Engl., 2004, 43, 4919.Google Scholar
  21. 21.
    S. Fau, R. J. Bartlett, J. Phys. Chem. A, 2001, 105, 4096.Google Scholar
  22. 22.
    L. J. Wang, S. Li, Q S. Li, J. Comp. Chem., 2001, 22, 1334.Google Scholar
  23. 23.
    M. N. Glukhovtsev, H. Jiao, P. v. R. Schleyer, Inorg. Chem., 1996, 35, 7124.Google Scholar
  24. 24.
    L Gagliardi, G. Orlandi, S. Evangelisti, B. O. Roos, J. Chem. Phys., 2001, 114, 10733.Google Scholar
  25. 25.
    M. I. Eremets, R. J. Hemley, H.-K. Mao, E. Gregoryanz, Nature, 2001, 411, 170.Google Scholar
  26. 26.
    M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, R. Boehler, Nat. Mater., 2004, 3, 558.Google Scholar
  27. 27.
    T. Curtius, Berichte, 1890, 23, 3023.Google Scholar
  28. 28.
    J. C. Bailar, H. J. Emeléus, R. Nyholm, A. F. Trotman-Dickenson, eds., “Comprehensive Inorganic Chemistry”, Pergamon, New York, 1973; vol. 2, pp. 276–293.Google Scholar
  29. 29.
    W. Zhu, J. Xiao, H. Xiao, J. Phys. Chem. B, 2006, 110, 9856, and refs. therein.Google Scholar
  30. 30.
    M. B. Smith and K. March, “March’s Advanced Organic Chemistry”, Wiley, New York, 2001; see index.Google Scholar
  31. 31.
    P. Botschwina, J. Chem. Phys., 1986, 85, 4591, and refs. therein.Google Scholar
  32. 32.
    R. Rawls, C&EN News, 25 January 1999, 7.Google Scholar
  33. 33.
    R. Haiges, J. A. Boatz, S. Schneider, T. Schroer, M. Yousufuddin, Angew. Chem. Int. Ed., 2004, 43, 3148.Google Scholar
  34. 34.
    R. Ponec, J. Roithová, X. Gironés, J. Jug, J. Mol. Struct. (Theochem), 2001, 545, 255.Google Scholar
  35. 35.
    R. Huisgen, I. Ugi, Angew. Chem., 1956, 68, 505.Google Scholar
  36. 36.
    P. Carlqvist, H. Oestmark, T. Brinck, J. Phys. Chem. A, 2004, 108, 7463.Google Scholar
  37. 37.
    A. Vij, J. G. Pavlovich, W. W. Wilson, v. Vij, k. O. Christe, Angew. Chem. Int. Ed. Engl., 2002, 41, 3051.Google Scholar
  38. 38.
    H. Östmark, S. Wallin, T. Brinck, P. Carlqvist, A. Claridge, E. Hedlund, L. Yudina, Chem. Phys. Lett., 2003, 379, 539.Google Scholar
  39. 39.
    L. Belau, Y. Haas, S. Zilberg, J. Phys. Chem. A, 2004, 108, 11715.Google Scholar
  40. 40.
    R. N. Butler, J. C. Stephens, L. A. Burke, J. Chem. Soc., Chem. Commun., 2003, 8, 1016.Google Scholar
  41. 41.
    T. Schroer, R. Haiges, S. Schneider, K. O. Christe, J. Chem. Soc., Chem. Commun., 2005, 12, 1607.Google Scholar
  42. 42.
    V. Benin, P. Kaszynski, J. G. Radziszewski, J. Org. Chem., 2002, 67, 1354.Google Scholar
  43. 43.
    D. A. Dixon, D. Feller, K. O. Christe, W. W. Wilson, A. Vij, V. Vij, H. D. B. Jenkins, R. M. Olson, M. S. Gordon, J. Am. Chem. Soc., 2004, 126, 834.Google Scholar
  44. 44.
    S. Fau, K. J. Wilson, R. J. Bartlett, J. Phys. Chem. A, 2002, 106, 4639.Google Scholar
  45. 45.
    L. J. Wang, Q. S. Li, P. Warburton, P. G. Mezey, J. Phys. Chem. A, 2002, 106, 1872.Google Scholar
  46. 46.
    M. S. Workentin, B. D. Wagner, F. Negri, M. Z. Zgierski, J. Lusztyk, W. Siebrand, D. D. M. Wayner, J. Phys. Chem., 1995, 99, 94.Google Scholar
  47. 47.
    M. T. Nguyen, T.-K. Ha, Berichte, 1996, 129, 1157.Google Scholar
  48. 48.
    E. Lewars, “Computational Chemistry”, Kluwer, Boston, 2003; section 5.5.2.Google Scholar
  49. 49.
    L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, J. A. Pople, J. Phys. Chem. A, 1998, 109, 7764.Google Scholar
  50. 50.
    L. A. Curtiss, K. P. Redfern, J. Pople, J. Chem. Phys., 2000, 112, 7374.Google Scholar
  51. 51.
    D. J. Henry, C. J. Parkinson, L. Radom, J. Phys. Chem. A, 2002, 106, 7927.Google Scholar
  52. 52.
    E. Lewars, “Computational Chemistry”, Kluwer, Boston, 2003; section 5.5.2.3.Google Scholar
  53. 53.
    R. Engelke, J. Am. Chem. Soc., 1993, 115, 2961, and refs. therein.Google Scholar
  54. 54.
    L. Gagliardi, S. Evangelisti, A. Bernhardssan, R. Lindh, B. O. Roos, Int. J. Quantum Chem., 2000, 77, 311.Google Scholar
  55. 55.
    G. Chung, M. W. Schmidt, M. S. Gordon, J. Phys. Chem. A, 2000, 104, 5647.Google Scholar
  56. 56.
    M. Goldberg, S. Hoz, H. Basch, J. Mol. Struct. (Theochem), 2003, 663, 135.Google Scholar
  57. 57.
    R. Engelke, J. Org. Chem., 1992, 57, 4841.Google Scholar
  58. 58.
    R. Engelke, J. R. Stine, J. Phys. Chem., 1990, 94, 5689.Google Scholar
  59. 59.
    H. Hopf, “Classics in Hydrocarbon Chemistry”, Wiley-VCH, Weinheim, New York, 2000; section 5.2.Google Scholar
  60. 60.
    W. J. Lauderdale, J. F. Stanton, R. J. Bartlett, J. Phys. Chem., 1992, 96, 1173.Google Scholar
  61. 61.
    M. W. Schmidt, M. D. Gordon, J. A. Boatz, Int. J. Quantum Chem., 2000, 76, 434.Google Scholar
  62. 62.
    L. Gagliardi, S. Evangelisti, P.-O. Widmark, B. O. Roos, Theor. Chem. Acc., 1997, 97, 136.Google Scholar
  63. 63.
    L. Gagliardi, S. Evangelisti, B. O. Roos, P.-O. Widmark, J. Mol. Struct. (Theochem), 1998, 428, 1.Google Scholar
  64. 64.
    J. D. Roberts, “Notes on Molecular Orbital Calculations”, W. A. Benjamin, Inc., New York, 1962; p. 77.Google Scholar
  65. 65.
    F. S. Mortimer, Adv. Chem. Ser., 1965, 54, 39.Google Scholar
  66. 66.
    M. J. S. Dewar, G. J. Gleicher, J. Chem. Phys., 1966, 44, 759.Google Scholar
  67. 67.
    M. J. S. Dewar, Pure Appl. Chem., 1975, 44, 767.Google Scholar
  68. 68.
    M. H. Palmer, A. J. Gaskell, R. H. Findlay, Tetrahedron Lett., 1973, 4659.Google Scholar
  69. 69.
    M. H. Palmer, A. J. Gaskell, R. H. Findley, Chem. Soc., Perkin Trans. 2: Physical Organic Chemistry, 1974, 7, 778.Google Scholar
  70. 70.
    T. K. Ha, R. Cimiraglia, M. T. Nguyen, Chem. Phys. Lett., 1981, 83, 317.Google Scholar
  71. 71.
    E. Lewars, “Computational Chemistry”, Kluwer, Boston, 2003; pp. 419–421.Google Scholar
  72. 72.
    H. Huber, Angew. Chem. Int. Ed. Engl., 1982, 21, 64.Google Scholar
  73. 73.
    P. Saxe, H. F. Schaefer, J. Am. Chem. Soc., 1983, 105, 1760.Google Scholar
  74. 74.
    E. Lewars, “Computational Chemistry”, Kluwer, Boston, 2003; Chapter 2.Google Scholar
  75. 75.
    R. Engelke J. Phys. Chem., 1989, 93, 5722.Google Scholar
  76. 76.
    T. C. Dinadayalane, U. D. Priyakumar, G. N. Sastry, J. Phys. Chem. A, 2004, 108, 11433 and references therein.Google Scholar
  77. 77.
    I. Gutman, J. H. Potgier, J. Chem. Ed., 1994, 71, 222.Google Scholar
  78. 78.
    E. Lewars, “Computational Chemistry”, Kluwer, Boston, 2003; section 5.4.Google Scholar
  79. 79.
    R. Engelke J. Phys. Chem., 1992, 96, 10789.Google Scholar
  80. 80.
    M. N. Glukhovtsev, H. Jiao, P. v. R. Schleyer, Chem. Phys. Lett., 1992, 198, 547; corrections Chem. Phys. Lett., 1993, 204, 394.Google Scholar
  81. 81.
    T.-K. Ha, M. T. Nguyen, Chem. Phys. Lett., 1992, 195, 179.Google Scholar
  82. 82.
    M. Tobita, R. J. Bartlett, J. Phys. Chem. A, 2001, 105, 4107.Google Scholar
  83. 83.
    J. Fabian, E. Lewars, Can. J. Chem., 2004, 82, 50.Google Scholar
  84. 84.
    E. Lewars, “Computational Chemistry”, Kluwer, Boston, 2003; pp. 241–242.Google Scholar
  85. 85.
    M. Gambiagi, M. S. de Gambiagi, C. D. dos Santos Silva, A. P. de Figueiredo, Phys. Chem. Chem. Phys., 2000, 2, 3381.Google Scholar
  86. 86.
    P. v. R. Schleyer, H. Jiao, N. J. R. van Eikema Hommes, J. R. Nicolaas, V. G. Malkin, O. Malkina, J. Am. Chem. Soc., 1997, 119, 12669.Google Scholar
  87. 87.
    S. Sakai, J. Phys. Chem. A, 2002, 106, 10370.Google Scholar
  88. 88.
    J. J. Engelberts, R. W. A. Havenith, J. H. Van Lenthe, L. W. Jenneskens, p. W. Fowler, Inorg. Chem., 2005, 44, 5266.Google Scholar
  89. 89.
    M. N. Glukhovtsev, P. v. R. Schleyer, Int. J. Quantum Chem., 1993, 46, 119.Google Scholar
  90. 90.
    A. Kotkin, A. Balkova, R. J. Bartlett, R. J. Boyd, P. v. R. Schleyer, J. Phys. Chem., 1996, 100, 5702.Google Scholar
  91. 91.
    T. J. Lee, J. E. Rice, J. Chem. Phys., 1991, 94, 1215.Google Scholar
  92. 92.
    K. M. Dunn, K. Morokuma, J. Chem. Phys., 1995, 102, 4904.Google Scholar
  93. 93.
    A. Larson, M. Larsson, J. Chem. Soc., Faraday Trans., 1997, 93, 2963.Google Scholar
  94. 94.
    M. Bitterova, H. Ostmark, T. Brinck, Chem. Phys. Lett., 2001, 347, 220.Google Scholar
  95. 95.
    D. R. Yarkony, J. Am. Chem. Soc., 1992, 114, 5406.Google Scholar
  96. 96.
    L. Wang, P. G. Mezey, J. Phys. Chem. A, 2005, 109, 3241.Google Scholar
  97. 97.
    H. Zhou, N.-B. Wong, G. Zhou, A. Tian, J. Phys. Chem. A, 2006, 110, 3845.Google Scholar
  98. 98.
    D. L. Strout, J. Phys. Chem. A, 2004, 108, 10911.Google Scholar
  99. 99.
    S. E. Sturdivant, F. A. Nelson, D. L. Strout, J. Phys. Chem. A, 2004, 108, 7087.Google Scholar
  100. 100.
    S. E. Sturdivant,, D. L. Strout, J. Phys. Chem. A, 2004, 108, 4773.Google Scholar
  101. 101.
    M. R. Manaa, Chem. Phys. Lett., 2004, 400, 23.Google Scholar
  102. 102.
    M. R. Manaa, Chem. Phys. Lett., 2000, 331, 262.Google Scholar
  103. 103.
    M. D. Thompson, T. M. Bledson, D. L. Strout, J. Phys. Chem. A, 2002, 106, 6880.Google Scholar
  104. 104.
    Q. S. Li, L. J. Wang, J. Phys. Chem. A, 2002, 105, 1203.Google Scholar
  105. 105.
    L. Gagliardi, S. Evangelisti, V. Barone, B. O. Roos, Chem. Phys. Lett., 2000, 320, 518.Google Scholar
  106. 106.
    T. M. Klapotke, A. Schulz, Main Group Met. Chem., 1997, 20, 325.Google Scholar
  107. 107.
    H. H. Michels, J. A. Montgomery, Jr., K. O. Christe, D. A. Dixon, J. Phys. Chem., 1995, 99, 187.Google Scholar
  108. 108.
    E. Wiberg, H. Z. Michaud, Z. Naturforsch., 1954, B9, 500.Google Scholar
  109. 109.
    Q. S. Li, H. X. Duan, J. Phys. Chem. A, 2005, 109, 9089.Google Scholar
  110. 110.
    U. Mueller, K. Dehnicke, Angew. Chem. Int. Ed. Engl., 1966, 5, 841.Google Scholar
  111. 111.
    M. A. Petrie, J. A. Sheehy, J. A. Boatz, G. Rasul, G. K. Sura Prakash, G. A. Olah, k. O. Christe, J. Am. Chem. Soc., 1997, 119, 8802.Google Scholar
  112. 112.
    K. Banert, Y.-H. Joo, T. Rüffler, B. Walfort, H. Lang, Angew. Chem. Int. Ed. Engl., 2007, 46, 1168.Google Scholar
  113. 113.
    V. J. Hruby, L. Boteju, G. Li, Chem. Eng. News, 1993, 71(41), 2.Google Scholar
  114. 114.
    S. Braese, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem. Int. Ed. Engl., 2005, 44, 5188.Google Scholar
  115. 115.
    T. Curtius, Berichte, 1890, 23, 3023.Google Scholar
  116. 116.
    L. F. Audrieth, Chem. Rev., 1934, 15, 169.Google Scholar
  117. 117.
    W. S. Frost, J. C. Cothran, A. W. Browne, J. Am. Chem. Soc., 1933, 55, 3516.Google Scholar
  118. 118.
    G. S. Yakovleva, R. Kh. Kurbangalina, L. N. Stesik, Fizika Goreniya i Vzryva, 1977, 13, 473; Chem., Abstr., 87: 154298.Google Scholar
  119. 119.
    R. J. Bartlett, Chem. Ind., 2000, 4, 140.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Errol G Lewars
    • 1
  1. 1.Trent UnversityPeterboroughCanada

Personalised recommendations