Normal form of holomorphic dynamical systems

  • Laurent Stolovitch
Part of the NATO Science for Peace and Security Series book series (NAPSB)

This article represents the expanded notes of my lectures at the ASI “Hamiltonian Dynamical Systems and applications”. We shall present various recent results about normal forms of germs of holomorphic vector fields at a fixed point in C n . We shall explain how relevant it is for geometric as well as for dynamical purpose. We shall first give some examples and counter-examples about holomorphic conjugacy. Then, we shall state and prove a main result concerning the holomorphic conjugacy of a commutative family of germs of holomorphic vector fields. For this, we shall explain the role of diophantine condition and the notion of singular complete integrability.


Normal Form Formal Power Series Poisson Structure Hamiltonian Vector Volume Preserve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AA88]
    D. V. Anosov and V. I. Arnold, editors. Dynamical systems. I, volume 1 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, 1988. Ordinary differential equations and smooth dynamical systems, Translated from the Russian.Google Scholar
  2. [AGZV85]
    V. I. Arnold, S. M. Guseın-Zade, and A. N. Varchenko. Singularities of differentiable maps. Vol. I, volume 82 of Monographs in Mathematics. Birkhäuser Boston Inc., 1985.Google Scholar
  3. [AGZV88]
    V. I. Arnold, S. M. Guseın-Zade, and A. N. Varchenko. Singularities of differentiable maps. Vol. II, volume 83 of Monographs in Mathematics. Birkhäuser Boston Inc., 1988.Google Scholar
  4. [Arn63]
    V.I. Arnold. Proof of a theorem by A.N. Kolmogorov on the persistence of quasi-periodic motions under small perturbations of the hamiltonian. Russian Math. Surveys, 18(5):9-36, 1963.CrossRefGoogle Scholar
  5. [Arn88a]
    V. I. Arnold. Geometrical methods in the theory of ordinary differential equations, volume 250 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, second edition, 1988.Google Scholar
  6. [Arn88b]
    V.I. Arnold, editor. Dynamical systems III, volume 28 of Encyclopaedia of Mathematical Sciences. Springer Verlag, 1988.Google Scholar
  7. [Arn97]
    V. I. Arnold. Mathematical methods of classical mechanics, volume 60 of Graduate Texts in Mathematics. Springer-Verlag, 1997. Corrected reprint of the second (1989) edition.Google Scholar
  8. [Bal00]
    Werner Balser. Formal power series and linear systems of meromorphic ordinary differential equations. Universitext. Springer-Verlag, New York, 2000.MATHGoogle Scholar
  9. [Bos86]
    J.-B. Bost. Tores invariants des systèmes dynamiques hamiltoniens (d’après Kolomogorov, Arnol’d, Moser, Rüssmann, Zehnder, Herman, Pöschel,…). In Séminaire Bourbaki, volume 133-134 of Astérisque, pages 113-157. Société Mathématiques de France, 1986. exposé 639.Google Scholar
  10. [Bru72]
    A.D. Bruno. Analytical form of differential equations. Trans. Mosc. Math. Soc, 25,131-288(1971); 26,199-239(1972), 1971-1972.Google Scholar
  11. [Bru95]
    F. Bruhat. Travaux de Sternberg. In Séminaire Bourbaki, Vol. 6, pages Exp. No. 217, 179-196. Soc. Math. France, Paris, 1995.Google Scholar
  12. [BS07]
    Boele Braaksma and Laurent Stolovitch. Small divisors and large multipliers. Ann. Inst. Fourier (Grenoble), 57(2):603-628, 2007.MATHMathSciNetGoogle Scholar
  13. [Con84]
    J. Conn. Normal forms for analytic Poisson structures. Ann. Math., 119:577-601, 1984.CrossRefMathSciNetGoogle Scholar
  14. [CS86]
    R. Cushman and J. A. Sanders. Nilpotent normal forms and representation theory of sl(2,R). In Multiparameter bifurcation theory (Arcata, Calif., 1985), volume 56 of Contemp. Math., pages 31-51. Amer. Math. Soc., 1986.Google Scholar
  15. [DW98]
    J.-P. Dufour and A. Wade. Formes normales de structures de Poisson ayant un 1-jet nul en un point. J. Geom. Phys., 26(1-2):79-96, 1998.MATHCrossRefMathSciNetGoogle Scholar
  16. [DZ05]
    J.-P. Dufour and Nguyen Tien Zung. Poisson structures and their normal forms, volume 242 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2005.Google Scholar
  17. [Eca]
    J. Ecalle. Sur les fonctions résurgentes. I,II,III Publ. Math. d’Orsay.Google Scholar
  18. [Eca92]
    J. Ecalle. Singularités non abordables par la géométrie. Ann. Inst. Fourier, Grenoble, 42,1-2(1992),73-164, 1992.MathSciNetGoogle Scholar
  19. [Fra95]
    J.-P. Françoise. Géométrie analytique et systèmes dynamiques. Presses Universitaires de France, Paris, 1995.Google Scholar
  20. [GR71]
    H. Grauert and R. Remmert. Analytische Stellenalgebren. Springer-Verlag, 1971.Google Scholar
  21. [GY99]
    T. Gramchev and M. Yoshino. Rapidly convergent iteration method for simultaneous normal forms fo commuting maps. Math. Z., 231:p. 745-770, 1999.MATHCrossRefMathSciNetGoogle Scholar
  22. [Il′ 93]
    Yu. S. Ilyashenko, editor. Nonlinear Stokes phenomena, volume 14 of Advances in Soviet Mathematics. American Mathematical Society, 1993.Google Scholar
  23. [Ito89]
    H. Ito. Convergence of birkhoff normal forms for integrable systems. Comment. Math. Helv., 64:412-461, 1989.MATHCrossRefMathSciNetGoogle Scholar
  24. [Kol57]
    A.N. Kolmogorov. The general theory of dynamical systems and classical mechanics. In Proceedings of International Congress of Mathematicians (Amsterdam, 1954), volume 1, pages 315-333. North-Holland, 1957. English translation in ’Collected Works", Kluwer.Google Scholar
  25. [Loh05]
    P. Lohrmann. Sur la normalisation holomorphe de structures de Poisson à 1-jet nul. C. R. Math. Acad. Sci. Paris, 340(11):823-826, 2005.MATHMathSciNetGoogle Scholar
  26. [Loh06]
    P. Lohrmann. Normalisation holomorphe et sectorielle de structures de Poisson. PhD thesis, Université Paul Sabatier, Toulouse, France, 2006.Google Scholar
  27. [Mal82]
    B. Malgrange. Travaux d’Ecalle et de Martinet-Ramis sur les systèmes dynamiques. Séminaire Bourbaki 1981-1982, exp. 582, 1982.Google Scholar
  28. [Mar80]
    J. Martinet. Normalisation des champs de vecteurs holomorphes. Séminaire Bourbaki, 33(1980-1981),564, 1980.Google Scholar
  29. [Mos90]
    J. Moser. On commuting circle mappings and simultaneous diophantine approximations. Math. Z., (205):p. 105-121, 1990.MATHCrossRefMathSciNetGoogle Scholar
  30. [MR82]
    J. Martinet and J.-P. Ramis. Problèmes de modules pour des équations différentielles non linéaires du premier ordre. Publ. Math. I.H.E.S, (55):63-164, 1982.MATHMathSciNetGoogle Scholar
  31. [MR83]
    J. Martinet and J.-P. Ramis. Classification analytique des équations différentielles non linéaires résonantes du premier ordre. Ann. Sci. E.N.S, 4ème série,16,571-621, 1983.MATHMathSciNetGoogle Scholar
  32. [Ram93]
    Jean-Pierre Ramis. Séries divergentes et théories asymptotiques. Bull. Soc. Math. France, 121(Panoramas et Syntheses, suppl.), 1993.Google Scholar
  33. [RS93]
    J.-P. Ramis and L. Stolovitch. Divergent series and holomorphic dynamical systems, 1993. Unpublished lecture notes from J.-P. Ramis lecture at the SMS Bifurcations et orbites périodiques des champs de vecteurs, Montréal 1992. 57p.Google Scholar
  34. [Rüs67]
    H. Rüssmann. Über die Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung. Math. Ann., (169):55-72, 1967.MATHCrossRefMathSciNetGoogle Scholar
  35. [Sie42]
    C.L. Siegel. Iterations of analytic functions. Ann. Math., (43): 807-812, 1942.Google Scholar
  36. [Ste58]
    S. Sternberg. On the structure of local homeomorphisms of euclidean n-space. II. Amer. J. Math., (80): 623-631, 1958.MATHCrossRefMathSciNetGoogle Scholar
  37. [Ste69]
    S. Sternberg. Celestial Mechanics, Part II. W.A Benjamin, 1969.Google Scholar
  38. [Sto96]
    L. Stolovitch. Classification analytique de champs de vecteurs 1-résonnants de (BCn , 0). Asymptotic Analysis, (12): 91-143, 1996.MATHMathSciNetGoogle Scholar
  39. [Sto97]
    L. Stolovitch. Forme normale de champs de vecteurs commutants. C. R. Acad. Sci. Paris Sér. I Math. (324): 665-668, 1997.MATHMathSciNetGoogle Scholar
  40. [Sto00]
    L. Stolovitch. Singular complete integrabilty. Publ. Math. I.H.E.S., (91): 133-210, 2000.MATHMathSciNetGoogle Scholar
  41. [Sto04]
    L. Stolovitch. Sur les structures de poisson singulières. Ergod. Th. & Synam. Sys., special volume in the memory of Michel Herman, (24):1833-1863, 2004.MATHMathSciNetGoogle Scholar
  42. [Sto05a]
    L. Stolovitch. A KAM phenomenon for singular holomorphic vector fields. Publ. Math. Inst. Hautes Études Sci., (102):99-165, 2005.MATHMathSciNetGoogle Scholar
  43. [Sto05b]
    L. Stolovitch. Normalisation holomorphe d’algèbres de type Cartan de champs de vecteurs holomorphes singuliers. Ann. of Math., (161):589-612, 2005.MATHCrossRefMathSciNetGoogle Scholar
  44. [Vey78]
    J. Vey. Sur certains systèmes dynamiques séparables. Am. Journal of Math. 100, pages 591-614, 1978.MATHCrossRefMathSciNetGoogle Scholar
  45. [Vey79]
    J. Vey. Algèbres commutatives de champs de vecteurs isochores. Bull. Soc. Math. France,107, pages 423-432, 1979.MATHMathSciNetGoogle Scholar
  46. [Vor81]
    S.M. Voronin. Analytic classification of germs of conformal mappings (BC, 0) →(BC, 0) with identity linear part. Funct. An. and its Appl., 15, 1981.Google Scholar
  47. [Zun02]
    Nguyen Tien Zung. Convergence versus integrability in Poincaré-Dulac normal form. Math. Res. Lett., 9(2-3):217-228, 2002.MATHMathSciNetGoogle Scholar
  48. [Zun05]
    Nguyen Tien Zung. Convergence versus integrability in Birkhoff normal form. Ann. of Math. (2), 161(1):141-156, 2005.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Laurent Stolovitch
    • 1
  1. 1.Laboratoire Emile PicardUniversité Paul SabatierFrance

Personalised recommendations