Selectivity of Hybridization Controlled by the Density of Solid Phase Synthesized DNA Probes on Glass Substrates

  • Fayi Song
  • Ulrich J. Krull
Conference paper
Part of the NATO Science for Peace and Security Series book series (NAPSB)

Optical biochip design based on varying the density of immobilized single-stranded DNA (ssDNA) oligonucleotide probes was examined. A method of immobilization was developed to yield various densities of probe molecules using photochemical activation of surfaces and in situ solid phase synthesis for DNA immobilization. High surface density of ssDNA probe (up to 1 × 1013 probes/cm2) was obtained using the immobilization method. The densities and extent of hybridization of nucleic acids were determined using confocal fluorescence microscopy. Selective hybridization of targets associated with spinal muscular atrophy containing single nucleotide polymorphisms (SNP), and their thermal denaturation profiles were investigated to examine the sensitivity and selectivity for SNP detection. The detection limit was less than 16 pM at room temperature. Single base mismatch discrimination was demonstrated based on control of melt temperature by selection of probe density, and temperature differences of 12-15°C could be achieved for SNP determination. Importantly, the results demonstrate that poor control of probe density can result in significant variability of selectivity, as seen by melt temperature shifts of up to 5°C in the density range that was investigated.


Nucleic acid hybridization fluorescence density single nucleotide polymorphism immobilization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beier M., and Hoheisel J. D., 1999, Versatile derivatisation of solid support media for covalent bonding on DNA-microchips, Nucleic Acids Res. 27 (9): 1970-1977.CrossRefGoogle Scholar
  2. Beier M., and Hoheisel J. D., 2000, Production by quantitative photolithographic synthesis of individually quality checked DNA microarrays, Nucleic Acids Res. 28 (4): 11.CrossRefGoogle Scholar
  3. Beier M., Stephan A., and Hoheisel J. D., 2001, Synthesis of Photolabile 5’-O-Phosphoramidites for the Photolithographic Production of Microarrays of Inversely Oriented Oligonucleotides, Helv. Chim. Acta 84: 2089-2095.CrossRefGoogle Scholar
  4. Cattaruzza F., Cricenti A., Flamini A., Girasole M., Longo G., Prosperi T., Andreano G., Cellai L., and Chirivino E., 2006, Controlled loading of oligodeoxyribonucleotide monolayers onto unoxidized crystalline silicon; fluorescence-based determination of the surface coverage and of the hybridization efficiency; parallel imaging of the process by Atomic Force Microscopy, Nucleic Acids Res. 34 (4): e32.CrossRefGoogle Scholar
  5. Chaudhury M. K., and Whitesides G. M., 1992, Correlation between surface free-energy and surface constitution, Science 255: 1230-1232.CrossRefADSGoogle Scholar
  6. Dertinger S. K. W., Jiang X., Li Z., Murphy V. N., andWhitesides G. M., 2002, Gradients of substrate-bound laminin orient axonal specification of neurons, Proc. Natl. Acad. Sci. USA 99 (20): 12542-12547.CrossRefADSGoogle Scholar
  7. Dodge A., Turcatti G., Lawrence I., de Rooji N. F., and Verpoorte E., 2004, A Microfluidic Platform Using Molecular Beacon-Based Temperature Calibration for Thermal Dehybridization of Surface-Bound DNA, Anal. Chem. 76 (6): 1778-1787.CrossRefGoogle Scholar
  8. Egeland R. D., and Southern E. M., 2005, Electrochemically directed synthesis of oligonucleotides for DNA microarray fabrication, Nucleic Acids Res. 33 (14): e125.CrossRefGoogle Scholar
  9. Fodor S. P. A., Read J. L., Pirrung M. C., Stryer L., Lu A. T., and Solas D., 1991, Light directed, spatially addressable parallel chemical synthesis, Science 251: 767-773.CrossRefADSGoogle Scholar
  10. Fortin E., Defontaine Y., Mailley P., Livache T., and Szunerits S., 2005, Micro-Imprinting of Oligonucleotides and Oligonucleotide Gradients on Gold Surfaces: A New Approach Based on the Combination of Scanning Electrochemical Microscopy and Surface Plasmon Resonance Imaging (SECM/ SPR-i), Electroanalysis 17 (5-6): 495-503.CrossRefGoogle Scholar
  11. Gao X., Gulari E., and Zhou X., 2004, In situ synthesis of oligonucleotide microarrays, Biopolymers 73: 579-596.CrossRefGoogle Scholar
  12. Gao X., LeProust E., Zhang H., Srivannavit O., Gulari E., Yu P., Nishiguchi C., Xiang Q., and Zhou X., 2001, A flexible light-directed DNAchip synthesis gated by deprotection using solution photogenerated acids, Nucleic Acids Res. 29 (22): 4744-4750.CrossRefGoogle Scholar
  13. Hasan A., Stengele K., Giegrich H., Cornwell P., Isham K. R., Sachleben R. A., Pfleiderer W., and Foote R., 1997, Photolabile protecting groups for nucleosides: Synthesis and photodeprotection rates, Tetrahedron 53 (12): 4247-4264.CrossRefGoogle Scholar
  14. Jiang X., Xu Q., Dertinger S. K. W., Stroock A. D., Fu T., and Whitesides G. M., 2005, A General Method for Patterning Gradients of Biomolecules on Surfaces Using Microfluidic Networks, Anal. Chem. 77 (8): 2338-2347.CrossRefGoogle Scholar
  15. Jin R., Wu G., Li Z., Mirkin C. A., and Schatz G. C., 2003, What controls the melting properties of DNA-linked gold nanoparticle assemblies?, J. Am. Chem. Soc. 125 (6): 1643-1654.CrossRefGoogle Scholar
  16. Levicky R., Herne T. M., Tarlov M. J., and Satija S. K., 1998, Using self-assembly to control the structure of DNA monolayers on gold: A neutron reflectivity study, J. Am. Chem. Soc. 120: 9787-9792.CrossRefGoogle Scholar
  17. Levicky R., and Horgan A., 2005, Physicochemical perspectives on DNA microarray and biosensor technologies, Trends Biotechnol. 23 (3): 143-149.CrossRefGoogle Scholar
  18. McGall G. H., Barone A. D., Diggelmann M., Fodor S. P. A., Gentalen E., and Ngo N., 1997, The efficiency of light-directed synthesis of DNA arrays on glass substrates, J. Am. Chem. Soc. 119 (22): 5081-5090.CrossRefGoogle Scholar
  19. Mougin K., Ham A. S., Lawrence M. B., Fernandez E. J., and Hillier A. C., 2005, Construction of a tethered poly(ethylene glycol) surface gradient for studies of cell adhesion kinetics, Langmuir 21 (11): 4809-4812.CrossRefGoogle Scholar
  20. Oh S. J., Ju J., Kim B. C., Ko E., Hong B. J., Park J.-G., Park J. W., and Choi K. Y., 2005, DNA microarrays on a dendron-modified surface improve significantly the detection of single nucleotide variations in the p53 gene, Nucleic Acids Res. 33 (10): e90.CrossRefGoogle Scholar
  21. Park S.H., and Krull, U.J., 2006, A spatially resolved nucleic acid biochip based on a gradient of density of immobilized probe oligonucleotide, Anal. Chim. Acta 564: 133-140.CrossRefGoogle Scholar
  22. Pease A. C., Solas D., Sullivan E. J., Cronic M. T., Holmes C. P., and Fodor S. P. A., 1994, Light-generated oligonucleotide arrays for rapid DNA-sequence analysis, Proc. Natl. Acad. Sci. USA 91: 5022-5026.CrossRefADSGoogle Scholar
  23. Peterson A. W., Heaton R. J., and Georgiadis R., 2000, Kinetic Control of Hybridization in Surface Immobilized DNA Monolayer Films, J. Am. Chem. Soc. 122: 7837-7838.CrossRefGoogle Scholar
  24. Peterson A. W., Heaton R. J., and Georgiadis R. M., 2001, The effect of surface probe densityon DNA hybridization, Nucleic Acids Res. 29 (24): 5163-5168.CrossRefGoogle Scholar
  25. Pirrung M. C., Fallon L., and McGall G. H., 1998, Proofing of photolithographic DNA synthesis with 3’, 5’-dimethoxybenzoinyloxycarbonyl-protected deoxynucleoside phosphoramidites, J. Org. Chem. 63 (2): 241-246.CrossRefGoogle Scholar
  26. Pirrung M. C., Wang L., and Montague-Smith M. P., 2001, 3’-nitrophenylpropyloxycarbonyl (NPPOC) protecting groups for high-fidelity automated 5’ -> 3’ photochemical DNA synthesis, Org. Lett. 3 (8): 1105-1108.CrossRefGoogle Scholar
  27. Piunno P. A. E., and Krull U. J., 2005, Trends in the development of nucleic acid biosensors for medical diagnostics, Anal. Bioanal. Chem. 381: 1004-1011.CrossRefGoogle Scholar
  28. Piunno P. A. E., Watterson J. H., Kotoris C. C., and Krull U. J., 2005, Alteration of the selectivity of hybridization of immobilized oligonucleotide probes by co-immobilization with charged oligomers of ethylene glycol, Anal. Chim. Acta 534: 53-61.CrossRefGoogle Scholar
  29. Plummer S. T., Wang Q., and Bohn P. W., 2003, Electrochemically Derived Gradients of the Extracellular Matrix Protein Fibronectin on Gold, Langmuir 19 (18): 7528-7536.CrossRefGoogle Scholar
  30. Shchepinov M. S., Case-Green S. C., and Southern E. M., 1997, Steric factors influencing hybridisation of nucleic acids to oligonucleotide arrays, Nucleic Acids Res. 25 (6): 1155-1161.CrossRefGoogle Scholar
  31. Steel A. B., Levicky R. L., Herne T. M., and Tarlov M. J., 2000, Immobilization of nucleic acids at solid surfaces: Effect of oligonucleotide length on layer assembly, Biophys. J. 79: 975-981.CrossRefGoogle Scholar
  32. Terrill R. H., Balss K. M., Zhang Y., and Bohn P. W., 2000, Dynamic monolayer gradients: Active spatiotemporal control of alkanethiol coatings on thin gold films, J. Am. Chem. Soc. 122 (5): 988-989.CrossRefGoogle Scholar
  33. Watterson J. H., Piunno P. A. E., and Krull U. J., 2002, Towards the optimization of an optical DNA sensor: control of selectivity coefficients and relative surface affinities, Anal. Chim. Acta 457: 29-38.CrossRefGoogle Scholar
  34. Watterson J. H., Piunno P. A. E., Wust C. C., and Krull U. J., 2000, Effects of Oligonucleotide Immobilization Density on Selectivity of Quantitative Transduction of Hybridization of Immobilized DNA, Langmuir 16 (11): 4984-4992.CrossRefGoogle Scholar
  35. Watterson J. H., Raha S., Kotoris C. C., Wust C. C., Charabaghi F., Jantzi S. C., Haynes N. K., Gendron N. H., Krull U. J., Mackenzie A. E., and Piunno, P.A.E., 2004, Rapid detection of single nucleotide polymorphisms associated with spinal muscular atrophy by use of a reusable fibre-optic biosensor, Nucleic Acids Res. 32 (2): e18.CrossRefGoogle Scholar
  36. Zeng J., Almadidy A., Watterson J. H., and Krull U. J., 2003, Interfacial hybridization kinetics of oligonucleotides immobilized onto fused silica surfaces, Sens. Actuators B 90: 68-75.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V 2008

Authors and Affiliations

  • Fayi Song
    • 1
  • Ulrich J. Krull
    • 1
  1. 1.Department of Chemical and Physical SciencesUniversity of TorontoMississaugaCanada

Personalised recommendations