Skip to main content

Silicon-Based Microphotonics for Biosensing Applications

  • Conference paper
Optical Waveguide Sensing and Imaging

This paper reviews theory and experiments on silicon photonic wire waveguide evanescent field (PWEF) biosensors. Theoretical considerations and supporting calculations show that sensor response increases both with increasing core-cladding refractive index contrast, and with decreasing waveguide core thickness until a maximum sensor response is achieved. As a result, appropriately designed Si waveguide sensors can have the largest response to superstrate refractive index shifts, and also to surface molecular adsorption, of any commonly available waveguide system. Measurements of Si waveguide sensor response to fluid index change and biotin-avidin binding reactions confirm the predictions of theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.G. Hunsperger, Integrated Optics: Theory and Technology, Third Edition, (SpringerVerlag, Berlin 1991).

    Google Scholar 

  2. G.T. Reed and A.P. Knights, Silicon Photonics: An Introduction, (John Wiley & Sons, Chichester, United Kingdom, 2004).

    Book  Google Scholar 

  3. L. Pavesi and D.J. Lockwood, Silicon Photonics, (Springer-Verlag, Berlin, 2004).

    Google Scholar 

  4. H. Ouyang, C. Striemer, and P.M. Fauchet, Quantitative analysis of the sensitivity of porous silicon optical biosensors Appl. Phys. Lett. 88, 163108-163110 (2006).

    Article  ADS  Google Scholar 

  5. J. Lu, C.M. Strohsahl B.L. Miller, and L.J. Rothberg, Reflective interferometric detection of label-free oligonucleotides, Anal. Chem. 76, 4416-4420 (2004)

    Article  Google Scholar 

  6. J. Homola, Present and future of surface plasmon resonance biosensors, Anal. Bioanal. Chem. 377, 528-529 (2003).

    Article  Google Scholar 

  7. J.J. Ramsden, Optical Biosensors, J. Molecular Recognition 10, 109-120 (1997).

    Article  Google Scholar 

  8. B.J. Luff, R.D. Harris, J.S. Wilkinson, R. Wilson, and D.J. Schiffrin, Integrated optical detection biosensor, J. Lightwave Technol. 16, 583-592 (1998).

    Article  ADS  Google Scholar 

  9. L.M. Lechuga, E. Mauriz, B. Sepulveda, J. Sanchez del Rio, A. Calle, G. Armelles, and C. Dominguez, Optical biosensors as early detectors of biological and chemical warfare agents, in Frontiers in Planar Lightwave Technology, S. Janz, J. Ctyroky, and S. Tanev, eds., 119-140 (Springer, Amsterdam, 2005).

    Google Scholar 

  10. H. Kogelnik, Theory of Optical Waveguides, in Guided-Wave Optoelectronics, 7-87, Second edition, 7-87, T. Tamir ed., (Springer-Verlag, Berlin 1990).

    Google Scholar 

  11. R.U. Ahmad, F. Pizutto, G.S. Camarda, R.L. Espinola, H. Rao, and R.M. Osgood, Ulracompact Corner-mirrors and T-branches in silicon-on-insulator,” IEEE Phot. Technol. Lett. 14, 65-67 (2002).

    Article  ADS  Google Scholar 

  12. V.R. Almeida, C.A. Barrios, R.R. Panepucci, M. Lipson, M.A. Foster, D.G. Ouzounov, and A.L. Gaeta, All-optical switching on a silicon chip, Opt. Lett. 29, 2867-2869 (2004).

    Article  ADS  Google Scholar 

  13. T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, Tunable add-drop multiplexer based on silicon-photonic wire waveguides”, IEEE Phot. Technol. Lett. 18, 1409-1411 (2006).

    Article  ADS  Google Scholar 

  14. W.R. Headley, G.T. Reed, S. Howe, A. Liu, and M. Paniccia, Polarization independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett., 85, 5523-5525, (2004).

    Article  ADS  Google Scholar 

  15. D.-X. Xu, S. Janz, and P. Cheben, Design of polarization insensitive ring resonators in SOI using cladding stress engineering and MMI couplers, IEEE Phot. Technol. Lett. 18, 343-345 (2006).

    Article  ADS  Google Scholar 

  16. A. Yalcin, K.C. Popat, J.C. Aldridge, T.A. Desai, J. Hryniewicz, N. Chbouki, B.E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M.S. Unlu and B.B. Goldberg, Optical sensing of biomolecules using microring resonators, IEEE J. Selected Topics in Quantum Electron. 12, 148-154 (2006).

    Article  Google Scholar 

  17. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, A. Delâge, P. Cheben and J. Lapointe, Thin silicon waveguides for biological and chemical sensing, Proceedings of the SPIE, vol. 6477 (in press, 2007)

    Google Scholar 

  18. V.R. Almeida, R.R. Panepucci, and M. Lipson, Nanotaper for compact mode conversion, Opt. Lett. 28, 1302-1304, (2003).

    Article  ADS  Google Scholar 

  19. B.J. Luff, R.D. Harris, J.S. Wilkinson, R. Wilson and D.J. Schiffrin, Integrated-optical directional coupler biosensor, Opt. Lett. 21, 618-619 (1996).

    Article  ADS  Google Scholar 

  20. H. Ping, K. Kawaguchi, J.S. Wilkinson, Integrated optical dual Mach Zehnder interferometer sensor, in Proceedings of the Conference on Lasers and Electro-Optics, CLEO/Pacific Rim 2001, Vol. 1, No. 15-19, I-156-I-157 (2001).

    Google Scholar 

  21. E.F. Shipper, A.M. Brugman, C. Dominguez, L.M. Lechuga, R.P.H. Kooyman and J. Greve, The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology, Sensors and Actuators B 40, 147-153, (1997).

    Article  Google Scholar 

  22. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya and L.M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology, Vol. 14, pp. 907-912, 2003.

    Article  ADS  Google Scholar 

  23. R.G. Heideman, R.P.H. Kooyman and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sensors and Actuators B, Vol. 10, pp. 209-217, 1993.

    Article  Google Scholar 

  24. J.M. Cooper, J. Shen, F.M. Young P. Connolly, J.R. Barker and G. Moores, “The imaging of streptavidin and avidin using scanning tunneling microscopy” J. Materials Science: Materials in Electronics 5, pp. 106-110 (1994) avidin properties

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, B.V

About this paper

Cite this paper

Janz, S. et al. (2008). Silicon-Based Microphotonics for Biosensing Applications. In: Bock, W.J., Gannot, I., Tanev, S. (eds) Optical Waveguide Sensing and Imaging. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6952-9_7

Download citation

Publish with us

Policies and ethics