Skip to main content

Photonic Liquid-Crystal Fibers: New Sensing Opportunities

  • Conference paper
Optical Waveguide Sensing and Imaging

Part of the book series: NATO Science for Peace and Security Series ((NAPSB))

The paper reviews and discusses the latest developments in the field of the photonic liquid-crystal fibers that have occurred for the last years in view of new challenges for both fiber optics sensing and liquid crystal photonics. In particular, we present the latest experimental results on electrically induced birefringence in photonic liquid crystal fibers and discuss possibilities and directions of future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.R. WoliƄski, “ Polarimetric optical fibers and sensors”, Progress in Optics XL, 1-75, edited by E. Wolf, North-Holland, Amsterdam (2000).

    Google Scholar 

  2. T.R. WoliƄski, in Encyclopedia of Optical Engineering, R.G. Diggers, ed., (M. Dekker, New York), 2150-2175 (2003).

    Google Scholar 

  3. T.R. WoliƄski, A. Szymanska, T. Nasilowski, E. Nowinowski, R. Dabrowski, “Polarization Properties of Liquid Crystal-Core Optical Fiber Waveguides”, Mol. Cryst. Liq. Cryst., Vol. 352, 361-370 (2000).

    Article  Google Scholar 

  4. T. R. WoliƄski, A. Szymanska, “Polarimetric optical fibers with elliptical liquid-crystal core”, Measurement Science and Technology 12, 948-951 (2001).

    ADS  Google Scholar 

  5. T.R. WoliƄski, P. Lesiak, R. Dabrowski, J. Kedzierski, E. Nowinowski-Kruszelnica, “Polarization mode dispersion in an elliptical liquid crystal core fiber”, Mol. Cryst. Liq. Cryst. 421, 175-186 (2004).

    Article  Google Scholar 

  6. T.T. Larsen, A. Bjarklev, D.S. Hermann, J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres”, Opt. Express 11, 2589-2596 (2003).

    Article  ADS  Google Scholar 

  7. R.T. Bise, R.S. Windeler, K.S. Kranz, C. Kerbage, B.J. Eggleton, and D.J. Trevor, “Tunable photonic band-gap fiber”, Optical Fiber Communication Conference Technical Digest, pp. 466-468 (2002).

    Google Scholar 

  8. Y. Du, Q. Lu and S.T. Wu., “Electrically tunable liquid-crystal photonic crystal fiber”, Appl. Phys. Lett. 85, 2181-2183 (2004).

    Article  ADS  Google Scholar 

  9. T.T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D.S. Hermann, J. Broeng, J. Li, S.T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers”, Opt. Express 12, 5857-5871 (2004).

    Article  ADS  Google Scholar 

  10. C. Kerbage, and B. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber”, Opt. Express 10, 246-255 (2002).

    ADS  Google Scholar 

  11. C. Kerbage, B.J. Eggleton, “Manipulating light by microfluidic motion in microstructured optical fibers”, Optical Fiber Technology, Vol. 10, Issue 2, 133-149 (2004).

    Article  ADS  Google Scholar 

  12. C. Zhang, G. Kai, Z. Wang, Y. Liu, T. Sun, S. Yuan, and X. Dong, “Tunable highly birefringent photonic bandgap fibers”, Opt. Lett. 30, 2703-2705 (2005).

    Article  ADS  Google Scholar 

  13. D.C. Zografopoulos, E.E. Kriezis, and T.D. Tsiboukis, “Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance,” Opt. Express 14, 914-925 (2006).

    Article  ADS  Google Scholar 

  14. T.R. WoliƄski, K. Szaniawska, K. Bondarczuk, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik, “Propagation properties of photonic crystals fibers filled with nematic liquid crystals”, Opto-Electronics Review 13(2), 59-64 (2005).

    Google Scholar 

  15. K. Szaniawska, T.R. WoliƄski, S. Ertman, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik, “Temperature tuning in photonic liquid crystal fibers”, Proc. SPIE, Vol. 5947, 45-50 (2005).

    ADS  Google Scholar 

  16. S. Ertman, T.R. WoliƄski, K. Szaniawska, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik, “Influence of electrical field on light propagation in microstructured liquid crystal fibers”, Proc. SPIE, Vol. 5950, 326-332 (2005).

    ADS  Google Scholar 

  17. T.R. WoliƄski, K. Szaniawska, S. Ertman, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik, “Spectral and polarization properties of microstructured liquid crystal fibers”, Proc. SPIE, Vol. 5936, 169-176 (2005).

    ADS  Google Scholar 

  18. T.R. WoliƄski, P. Lesiak, A.W. Domanski, K. Szaniawska, S. Ertman, R. Dabrowski, J. Wojcik, “Polartization optics of microstructured liquid crystal fibers”, Mol. Cryst. Liq. Cryst. 454, 333-350 (2006).

    Google Scholar 

  19. T.R. WoliƄski, K. Szaniawska, S. Ertman, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibers”, Measurement Science and Technology 17, 985-991 (2006).

    Article  ADS  Google Scholar 

  20. W.J. Bock, A.W. DomaƄski, T.R. WoliƄski, Applied Optics. 29, 3484 (1990).

    Article  ADS  Google Scholar 

  21. J. Schirmer, P. Kohns, T. Schmidt-Kaler, A. Muravski, S. Yakovenko, V. Bezborodov, R. Dabrowski, P. Adomenas, “Birefringence and refractive indices dispersion of different liquid crystalline structures”, Mol. Cryst. Liq. Cryst., 307, 1-26 (1997).

    Article  Google Scholar 

  22. M.W. Haakestad, T.T. Alkeskjold, M.D. Nielsen, L. Scolari, J. Riishede, H.E. Engan, A. Bjarklev, “Electrically tunable photonic bangap guidance in a liquid-crystal-filled photonic cystal fiber”, IEEE Phot. Techn. Lett. 17, 819-821 (2005).

    Article  ADS  Google Scholar 

  23. L. Scolari, T.T. Alkeskjold, J. Riishede, A. Bjarklev, D.S. Hermann, A. Anawati, M.D. Nielsen, P. Bassi, “Continuously tunable devices based on electrical control of dualfrequency liquid crystal filled photonic bandgap fibers”, Opt. Express 13, 7483-7496 (2005).

    Article  ADS  Google Scholar 

  24. J.A. Reyes-Cervantes, J.A. Reyes-Avandano, P. Helevi, “Tuning of optical response of photonic bandgap structures”, Proc. SPIE, 5511, 50-60 (2004).

    Article  ADS  Google Scholar 

  25. Dwight W. Berreman, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal”, Phys. Rev. Lett. 28, 1683-1686 (1972).

    Article  Google Scholar 

  26. M. O’Neill and S.M. Kelly, “Photoinduced surface alignment for liquid crystal displays”, J. Phys. D: Appl. Phys. 33, R67-R84 (2000).

    Article  Google Scholar 

  27. V.V. Presnyakov, Z.J. Liu, V.G. Chigrinov, “Infiltration of photonic crystal fiber with liquid crystals”, Proc. SPIE 6017, p. 60170J-1-7 (2005).

    Google Scholar 

  28. M. Schadt, K. Schmitt, V. Kozinkov, V.G. Chigrinov, “Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers”, Japan. J. Appl. Phys. 31, 2155-2164 (1992).

    Article  ADS  Google Scholar 

  29. G.P. Bryan-Brown, I.C. Sage, “Photoinduced Ordering and Alignment Properties of Polyvinylcinnamates”, Liq. Cryst., 20, 825-829 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, B.V

About this paper

Cite this paper

WoliƄski, T.R. (2008). Photonic Liquid-Crystal Fibers: New Sensing Opportunities. In: Bock, W.J., Gannot, I., Tanev, S. (eds) Optical Waveguide Sensing and Imaging. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6952-9_3

Download citation

Publish with us

Policies and ethics