Polarized Light Transport into Scattering Media Using a Quaternion-Based Monte Carlo

  • Jessica C. Ramella-Roman
Conference paper
Part of the NATO Science for Peace and Security Series book series (NAPSB)

Polarized light transport into a scattering media can be modeled using polarization sensitive Monte Carlo programs. This Chapter will illustrate one such programs based on quaternion algebra. In the program the polarization reference plane is tracked using two unit-vectors u and v, quaternions are used to accomplish the rotation of the polarization reference plane. Comparison with Adding Doubling models showed that our Monte Carlo algorithm yields results with less than 1% error.


Polarization Quaternion Monte Carlo 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Côté and I. Vitkin, “Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations,” Opt. Express 13, 148-163, (2005).CrossRefADSGoogle Scholar
  2. 2.
    S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media,” Appl. Opt. 39, 1580-1588, (2000).CrossRefADSGoogle Scholar
  3. 3.
    J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13, 4420-4438, (2005).CrossRefADSGoogle Scholar
  4. 4.
    A. N. Yaroslavsky, V. Neel and R. Rox Anderson “Demarcation of Nonmelanoma Skin Cancer Margins in Thick Excisions Using Multispectral Polarized Light Imaging,” Journal of Investigative Dermatology 121, 259-266, (2003).CrossRefGoogle Scholar
  5. 5.
    J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Design, testing and clinical studies of a hand-held polarized light camera,” Journal of Biomedical Optics, 9, 1305-1310, (2004).CrossRefADSGoogle Scholar
  6. 6.
    V. Backman, M. B. Wallace, L. T. Perelman et al. “Detection of prei nvasive cancer cells,” Nature 406: 35-36, (2000).CrossRefADSGoogle Scholar
  7. 7.
    C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355-1357, (2000).CrossRefADSGoogle Scholar
  8. 8.
    G. W. Kattawar and G. N. Plass, “Radiance and polarization of multiple scattered light from haze and clouds,” Appl. Opt. 7, 1519-1527, (1967).CrossRefADSGoogle Scholar
  9. 9.
    G. W. Kattawar and G. N. Plass, “Degree and direction of polarization of multiple scattered light. 1: Homogeneous cloud layers,” Appl. Opt. 11, 2851-2865, (1972).CrossRefADSGoogle Scholar
  10. 10.
    P. Bruscaglione, G. Zaccanti, and W. Qingnong, “Transmission of a pulsed polarized light beam through thick turbid media: numerical results,” Appl. Opt. 32, 6142-6150, (1993).CrossRefADSGoogle Scholar
  11. 11.
    S. Bianchi, A. Ferrara, and C. Giovannardi, “Monte Carlo simulations of dusty spiral galaxies: extinction and polarization properties,” American Astronomical Society 465, 137-144, (1996).Google Scholar
  12. 12.
    S. Bianchi, Estinzione e polarizzazione della radiazione nelle galassie a spirale, Tesi di Laura (in Italian), 1994.Google Scholar
  13. 13.
    S. Martinez and R. Maynard, “Polarization Statistics in Multiple Scattering of light: a Monte Carlo approach,” in Localization and Propagation of classical waves in random and periodic structures (Plenum Publishing Corporation New York, 1993).Google Scholar
  14. 14.
    S. Martinez, Statistique de polarization et effet Faraday en diffusion multiple de la lumiere Ph.D. Thesis (in French and English), 1984.Google Scholar
  15. 15.
    J. M. Schmitt, A. H. Gandjbakhche, R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl Optics; 32, 6535-6546, (1992).CrossRefADSGoogle Scholar
  16. 16.
    M. J. Rakovic, G. W. Kattawar, M. Mehrubeoglu, B. D. Cameron, L. -H. Wang, S. Rastegar, and G. L. Cote, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38, 3399-3408, (1999).CrossRefADSGoogle Scholar
  17. 17.
    X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: A Monte Carlo study,” J. Biomed. Opt. 7, 279-290, (2002).CrossRefADSGoogle Scholar
  18. 18.
    J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13, 10392-10405, (2005).CrossRefADSGoogle Scholar
  19. 19.
    M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media”, Opt. Express 26, 6530-6539, (2004).CrossRefADSGoogle Scholar
  20. 20.
    N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44, 335-341, (1949).MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    L. H. Wang, S. L. Jacques, and L. -Q. Zheng, “MCML - Monte Carlo modeling of photon transport in multi-layered tissues,” Computer Methods and Programs in Biomedicine 47, 131-146, (1995).CrossRefGoogle Scholar
  22. 22.
    E. Hecht, Optics 4th ed, Pearson Addison Weasley Ed. 2002.Google Scholar
  23. 23.
    Bohren and D. R. Huffman, Absorption and scattering of light by small particles, (Wiley Science Paperback Series, 1998).Google Scholar
  24. 24.
    K. Shoemake, “Animating rotation with quaternion curves,” Computer Graphics 19, 245-254, (1985).CrossRefGoogle Scholar
  25. 25.
    J. J. Craig, Introduction to robotics. Mechanics and controls, (Addison-Weseley Publishing Company, 1986).Google Scholar
  26. 26.
  27. 27.
    K. F. Evans and G. L. Stephens, “A new polarized atmospheric radiative transfer model,” J. Quant. Spectrosc. Radiat Transfer. 46, 413-423, (1991).CrossRefADSGoogle Scholar
  28. 28.
    F. Jaillon and H. Saint-Jalmes, “Description and time reduction of a Mnte Carlo code to simulate propagation of polarized light trhough scattering media.” Appl Optics 42, 16 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V 2008

Authors and Affiliations

  • Jessica C. Ramella-Roman
    • 1
  1. 1.Department of 0020 Biomedical EngineeringThe Catholic University of AmericaWashingtonUSA

Personalised recommendations