Skip to main content

CD8+ CD57+ T cells in tumor immunology

  • Chapter
Atlas Effectors of Anti-Tumor Immunity
  • 654 Accesses

Abstract

The proportion of human peripheral blood CD8+ T cells that express CD57 is lower at birth but increases with age as well as in patients with several pathologies such as the human immunodeficiency virus infection (HIV), cytomegalovirus infection (CMV), myeloma multiple, colorectal cancer and gastric cancer. This T cell subset has been shown to be an effector phenotype characterized by IFN-γ production as well as being an important perforin and granzyme-A expression. It has been hypothesized that this results from continuous stimulation, however, this phenotype may be due to direct tumoral effects on CD8+ T cells. CD8+CD57+ T cells have been shown to infiltrate tumors in different stages, suggesting that they play a role in tumor immunology. In this chapter we analyze some basic aspects about how CD8+CD57+ T cells behave in tumor immunology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abo T and Balch CM (1981) A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1) J Immunol 127(3): 1024–1029

    PubMed  CAS  Google Scholar 

  2. Abo T, Watanabe H et al (1995) Extrathymic T cells stand at an intermediate phylogenetic position between natural killer cells and thymus-derived T cells. Nat Immun 14(4): 173–187

    PubMed  CAS  Google Scholar 

  3. Ackerman A L and Cresswell P (2004) Cellular mechanisms governing cross-presentation of exogenous antigens. Nat Immunol 5(7): 678–684

    Article  PubMed  CAS  Google Scholar 

  4. Ami K, Ohkawa T et al (2002) Activation of human T cells with NK cell markers by staphylococcal enterotoxin A via IL-12 but not via IL-18. Clin Exp Immunol 128(3): 453–459.

    Article  PubMed  CAS  Google Scholar 

  5. Apte RN and Voronov E (2002) Interleukin-1 – a major pleiotropic cytokine in tumor-host interactions. Semin Cancer Biol 12(4): 277–290

    Article  PubMed  CAS  Google Scholar 

  6. Bakhshi A, Jensen J P et al (1985) Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41(3): 899–906

    Article  PubMed  CAS  Google Scholar 

  7. Barry M and Bleackley RC (2002) Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol 2(6): 401–409

    PubMed  CAS  Google Scholar 

  8. Brenchley JM, Karandikar N J et al (2003) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101(7): 2711–2720

    Article  PubMed  CAS  Google Scholar 

  9. Chandan VS, Faquin WC et al (2006) The role of immunolocalization of CD57 and GLUT-1 in cell blocks in fine-needle aspiration diagnosis of papillary thyroid carcinoma. Cancer 108(5): 331–336

    Article  PubMed  Google Scholar 

  10. Chochi K, Ichikura T et al (2003) The increase of CD57+ T cells in the peripheral blood and their impaired immune functions in patients with advanced gastric cancer. Oncol Rep 10(5): 1443–1448

    PubMed  Google Scholar 

  11. Clark WR (1994) Immunology. The hole truth about perforin. Nature 369(6475): 16–17

    Article  PubMed  CAS  Google Scholar 

  12. Culig Z (2005) Interleukin-6 polymorphism: expression and pleiotropic regulation in human prostate cancer. J Urol 174(2): 417

    Article  PubMed  Google Scholar 

  13. Dinarello CA (2006) The paradox of pro-inflammatory cytokines in cancer. Cancer Metastasis Rev 25(3): 307–313

    Article  PubMed  CAS  Google Scholar 

  14. Gagnon E, Duclos S et al (2002) Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110(1): 119–131

    Article  PubMed  CAS  Google Scholar 

  15. Garland RJ, El-Shanti N et al (2002) Human CD8+ CTL recognition and in vitro lysis of herpes simplex virus-infected cells by a non-MHC restricted mechanism. Scand J Immunol 55(1): 61–69

    Article  PubMed  CAS  Google Scholar 

  16. Hanahan D and Weinberg RA (2000) The hallmarks of cancer. Cell 100(1): 57–70

    Article  PubMed  CAS  Google Scholar 

  17. Heath W R and Carbone FR (2001) Cross-presentation in viral immunity and self-tolerance. Nat Rev Immunol 1(2): 126–134

    Article  PubMed  CAS  Google Scholar 

  18. Hisada M, Kamiya S et al (2004) Potent antitumor activity of interleukin-27. Cancer Res 64(3): 1152–1156

    Article  PubMed  CAS  Google Scholar 

  19. Hoji A, Connolly NC et al (2007) CD27 and CD57 expression reveals atypical differentiation of human immunodeficiency virus type 1-specific memory CD8+ T cells. Clin Vaccine Immunol 14(1): 74–80

    Article  PubMed  CAS  Google Scholar 

  20. Houde M, Bertholet S et al (2003) Phagosomes are competent organelles for antigen cross-presentation. Nature 425(6956): 402–406

    Article  PubMed  CAS  Google Scholar 

  21. Ibegbu C C, Xu YX et al (2005) Expression of killer cell lectin-like receptor G1 on antigen-specific human CD8+ T lymphocytes during active, latent, and resolved infection and its relation with CD57. J Immunol 174(10): 6088–6094

    PubMed  CAS  Google Scholar 

  22. Jimenez-Martinez MC, Linares M et al (2004) Intracellular expression of interleukin-4 and interferon-gamma by a Mycobacterium tuberculosis antigen-stimulated CD4+ CD57+ T-cell subpopulation with memory phenotype in tuberculosis patients. Immunology 111(1): 100–106

    Article  PubMed  CAS  Google Scholar 

  23. Jungalwala FB (1994) Expression and biological functions of sulfoglucuronyl glycolipids (SGGLs) in the nervous system – a review. Neurochem Res 19(8): 945–957

    Article  PubMed  CAS  Google Scholar 

  24. Kay N E and Pittner BT (2003) IL-4 biology: impact on normal and leukemic CLL B cells. Leuk Lymphoma 44(6): 897–903

    Article  PubMed  CAS  Google Scholar 

  25. Kayagaki N, Kawasaki A et al (1995) Metalloproteinase-mediated release of human Fas ligand. J Exp Med 182(6): 1777–1783

    Article  PubMed  CAS  Google Scholar 

  26. Khan N, Shariff N et al (2002) Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol 169(4): 1984–1992

    PubMed  CAS  Google Scholar 

  27. Klebanoff CA, Gattinoni L et al (2005) Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci U S A 102(27): 9571–9576

    Article  PubMed  CAS  Google Scholar 

  28. Klebanoff CA, Gattinoni L et al (2006) CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol Rev 211:214–224

    Article  PubMed  CAS  Google Scholar 

  29. Kulkarni AB, Thyagarajan T et al (2002) Function of cytokines within the TGF-beta superfamily as determined from transgenic and gene knockout studies in mice. Curr Mol Med 2(3): 303–327

    Article  PubMed  CAS  Google Scholar 

  30. Letterio JJ (2005) TGF-beta signaling in T cells: roles in lymphoid and epithelial neoplasia. Oncogene 24(37): 5701–5712

    Article  PubMed  CAS  Google Scholar 

  31. Linn Y C and Hui KM (2003) Cytokine-induced killer cells: NK-like T cells with cytotolytic specificity against leukemia. Leuk Lymphoma 44(9): 1457–1462

    Article  PubMed  CAS  Google Scholar 

  32. Nowak AK, Lake RA et al (2003) Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J Immunol 170(10): 4905–4913

    PubMed  CAS  Google Scholar 

  33. Ohkawa T, Seki S et al (2001) Systematic characterization of human CD8+ T cells with natural killer cell markers in comparison with natural killer cells and normal CD8+ T cells. Immunology 103(3): 281–290

    Article  PubMed  CAS  Google Scholar 

  34. Okada T, Iiai T et al (1995) Origin of CD57+ T cells which increase at tumour sites in patients with colorectal cancer. Clin Exp Immunol 102(1): 159–166

    PubMed  CAS  Google Scholar 

  35. Papagno L, Spina CA et al (2004) Immune activation and CD8+ T-cell differentiation towards senescence in HIV-1 infection. PLoS Biol 2(2): E20

    Article  PubMed  Google Scholar 

  36. Peter ME and Krammer PH (2003) The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10(1): 26–35

    Article  PubMed  CAS  Google Scholar 

  37. Pflanz S, Timans JC et al (2002) IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4(+) T cells. Immunity 16(6): 779–790

    Article  PubMed  CAS  Google Scholar 

  38. Pittet MJ, Speiser DE et al (2000) Cutting edge: cytolytic effector function in human circulating CD8+ T cells closely correlates with CD56 surface expression. J Immunol 164(3): 1148–1152

    PubMed  CAS  Google Scholar 

  39. Rampino N, Yamamoto H et al (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275(5302): 967–969

    Article  PubMed  CAS  Google Scholar 

  40. Sada-Ovalle I, Torre-Bouscoulet L et al (2006) Characterization of a cytotoxic CD57+ T cell subset from patients with pulmonary tuberculosis. Clin Immunol 121(3): 314–323

    Article  PubMed  CAS  Google Scholar 

  41. Sadat-Sowti B, Debre P et al (1991) A lectin-binding soluble factor released by CD8+CD57+ lymphocytes from AIDS patients inhibits T cell cytotoxicity. Eur J Immunol 21(3): 737–741

    Article  PubMed  CAS  Google Scholar 

  42. Sadat-Sowti B, Debre P et al (1994) An inhibitor of cytotoxic functions produced by CD8+CD57+ T lymphocytes from patients suffering from AIDS and immunosuppressed bone marrow recipients. Eur J Immunol 24(11): 2882–2888

    Article  PubMed  CAS  Google Scholar 

  43. Sallusto F, Lenig D et al (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754): 708–712

    Article  PubMed  CAS  Google Scholar 

  44. Schachner M and Martini R (1995) Glycans and the modulation of neural-recognition molecule function. Trends Neurosci 18(4): 183–191

    Article  PubMed  CAS  Google Scholar 

  45. Sze DM, Giesajtis G et al (2001) Clonal cytotoxic T cells are expanded in myeloma and reside in the CD8(+)CD57(+)CD28(–) compartment. Blood 98(9): 2817–2827

    Article  PubMed  CAS  Google Scholar 

  46. Takeda A, Hamano S et al (2003) Cutting edge: role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment. J Immunol 170(10): 4886–4890

    PubMed  CAS  Google Scholar 

  47. Tan LC, Mowat AG et al (2000) Specificity of T cells in synovial fluid: high frequencies of CD8(+) T cells that are specific for certain viral epitopes. Arthritis Res 2(2): 154–164

    Article  PubMed  CAS  Google Scholar 

  48. Thies A, Schachner M et al (2004) The developmentally regulated neural crest-associated glycotope HNK-1 predicts metastasis in cutaneous malignant melanoma. J Pathol 203(4):933–939

    Article  PubMed  CAS  Google Scholar 

  49. Trapani JA and Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2(10): 735–747

    Article  PubMed  CAS  Google Scholar 

  50. Tsujimoto Y, Yunis J et al (1984) Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science 224(4656): 1403–1406

    Article  PubMed  CAS  Google Scholar 

  51. Wallach D, Kovalenko AV et al (1998) Death-inducing functions of ligands of the tumor necrosis factor family: a Sanhedrin verdict. Curr Opin Immunol 10(3): 279–288.

    Article  PubMed  CAS  Google Scholar 

  52. Wang EC, Taylor-Wiedeman J et al (1993) Subsets of CD8+, CD57+ cells in normal, healthy individuals: correlations with human cytomegalovirus (HCMV) carrier status, phenotypic and functional analyses. Clin Exp Immunol 94(2): 297–305

    PubMed  CAS  Google Scholar 

  53. Wang WS, Chen PM et al (2006) Matrix metalloproteinase-7 increases resistance to Fas-mediated apoptosis and is a poor prognostic factor of patients with colorectal carcinoma. Carcinogenesis 27(5): 1113–1120

    Article  PubMed  CAS  Google Scholar 

  54. Yue FY, Dummer R et al (1997) Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I, HLA class-II and ICAM-1 molecules. Int J Cancer 71(4): 630–637

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sada-Ovalle, M.I. (2008). CD8+ CD57+ T cells in tumor immunology. In: Kiselevsky, M.V. (eds) Atlas Effectors of Anti-Tumor Immunity. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6931-4_5

Download citation

Publish with us

Policies and ethics