Skip to main content

Adoptive immunotherapy for human cancers: Flagmen signal first “open road” then “roadblocks.” A narrative synopsis

  • Chapter
Book cover Atlas Effectors of Anti-Tumor Immunity

Abstract

There was overwhelming evidence documented in vitro in the early 1970s for lymphocyte-mediated cytotoxicity to autologous cancer cells. Cancer-bearing patients circulated small compact lymphocytes in their blood that promptly killed their tumor cells in vitro. These lymphocytes were identified later as CD8+ immune T cells. Tumor cells were killed by cytoplasmic lysis with perforins and granzymes, or by nuclear clumping by Fas ligand and related ligands. With the discovery of T cell growth factor (interleukin-2), the road for lymphocyte therapy of human cancers appeared wide open. Then emerged the “large granular lymphocytes”. These cells occurred not only in patients with cancer, but in healthy cancer-free individuals. The author of this article served as “negative (healthy) control” in the cytotoxicity assays in the late 1960s and early 1970s. Some project site visitors of the National Cancer Institute could not comprehend that “immune reactions could exist without pre-immunization” and referred to the phenomenon as an “in vitro artifact” (worse than that: they canceled grant support for its study). It was years later, that first in mice and then in human patients the “large granular lymphocytes” were recognized as natural killer cells. Then emerged the “suppressor/regulatory T cells” (TREG). This lymphocyte population is responsible for curtailing autoimmune reactions against “self ”. Tumor cells masquerading as “self ” are protected by TREG against cytotoxicity executed by immune T cells, and even by NK cells. Adoptive immune lymphocyte therapy of human cancer will be effectively resolved when technology develops for the neutralization of the TREG population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  1. Alileche A, Plaisance S, Han DS, Rubinstein E, Mingari C, Bellomo R, Jasmin C, Azzarone B (1993) Human melanoma cell line M14 secretes functional interleukin-2. Oncogene 8(7): 1791–1796

    PubMed  CAS  Google Scholar 

  2. Ansell SM (2003) Adding cytokines to monoclonal antibody therapy: does the concurrent administration of interleukin-12 add to the efficacy of rituximab in B cell non-Hodgkin lymphoma? Leuk Lymphoma 44(8):1309–1315

    PubMed  CAS  Google Scholar 

  3. Antoine M, Reimers OK, Dickson C, Kiefer P (1997) Fibroblast growth factor 3, a protein with dual subcellular localization, is targeted to the nucleus and nucleolus by the concerted action of two nuclear localization signals and a nucleolar retention signal. J Biol Chem 272(47):29475–29481

    PubMed  CAS  Google Scholar 

  4. Arnaud E, Touriol C, Boutonnet C, Gensac MC, Vagner S, Prats H, Prats AC (1999) A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol Cell Biol 19(1):505–514

    PubMed  CAS  Google Scholar 

  5. Arora A, Su G, Mathiowitz E, Reineke J, Chang AE, Sable MS (2006) Neoadjuvant intratumoral cytokine-loaded microspheres are superior to postoperative autologous cellular vaccines in generating systemic anti-tumor immunity. J Surg Oncol 94(5):403–412

    PubMed  CAS  Google Scholar 

  6. Bachmann M, Möröy T (2005) The serine/threonine kinase Pim-1. Int J Biochem Cell Biol 37(4):726–730

    PubMed  CAS  Google Scholar 

  7. Basler M, Groettrup M (2007) Advances in prostate cancer immunotherapies. Drugs Aging 24(3):197–221

    PubMed  CAS  Google Scholar 

  8. Blackburn SD, Wherry EJ (20076) IL-10, T cell exhaustion and viral persistence. Trends Microbiol 15(4)P:143–146

    CAS  Google Scholar 

  9. Blackwood EM, Lugo TG, Kretzner L, King MW, Street AJ, Witte ON, Eisenman RN (1994) Functional analysis of the AUG- and CUG-initiated forms of the c-Myc protein. Mol Cell Biol 5(5):597–609

    CAS  Google Scholar 

  10. Blank C, Kuball J, Voelkl S, Wiendl H, Becker B, Walter B, Majdic O, Gajewski TF, Theobald M, Andreesen R, Mackensen A (2006) Blockade of PD-L1 (B7-H1) augments human tumor-specific T cell responses in vitro. Int J Cancer 119(2):317–327

    PubMed  CAS  Google Scholar 

  11. Bonavida B (2007) Rituximab-induced inhibi- tion of antiapoptotic cell survival pathways: implications in chemo/immunoresistance, rituximab unresponsiveness, prognostic and novel therapeutic interventions. Oncogene 26(25):3629–3636

    PubMed  CAS  Google Scholar 

  12. Bontkes HJ, Kramer D, Ruizendaal JJ, Kueter EW, van Tendeloo VF, Meijer CJ, Hooijberg E (2007) Dendritic cells transfected with interleukin-12 and tumor-associated messenger RNA induce high avidity cytotoxic T cells. Gene Ther 14(4):366–375

    PubMed  CAS  Google Scholar 

  13. Brooks DG, Trifilo MJ, Edelmann KH, Teyton L, McGavern DB, Oldstone MB (2006) Interleukin-10 determines viral clearance or persistence in vivo. Nat Med 12(11): 1246–1248

    Google Scholar 

  14. Burger JA, Tsukada N, Burger M, Zvaifler NJ, Del’Aquila M, Kipps TJ (2000) Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 96(8):2655–2663

    PubMed  CAS  Google Scholar 

  15. Buschle M, Campana D, Carding SR, Richard C, Hoffbrand AV, Bernner MK (1993) Interferon gamma inhibits apoptotic cell death in B cell chronic lymphocytic leukemia. J Exp Med 177(1):213–218

    PubMed  CAS  Google Scholar 

  16. Bruening W, Pelletier J (1996) A non-AUG translational initiation event generates novel WT1 isoforms. J Biol Chem 271(15):8646–8654

    PubMed  CAS  Google Scholar 

  17. Cassel WA, Murray DR, Olkowski SZL (2005) Newcastle disease virus oncolysate in the management of stage III malignant melanoma. In: Reference 94, pp 677–689

    Google Scholar 

  18. Coccoris M, de Witte MA, Schumacher TN (2005) Prospects and limitations of T cell receptor gene therapy. Curr Gene Ther 5(6):583–593

    PubMed  CAS  Google Scholar 

  19. Corcelette S, Massé T, Madjar JJ (2000) Initiation of transition by non-AUG codons in human T-cell lymphotropic virus type I mRNA encoding both Rex and Tax regulatory proteins. Nucleic Acid Res 28(7):1625–1634

    PubMed  CAS  Google Scholar 

  20. Coudrec B, Prats H, Bayard F, Amalric F (1991) Potential oncogenic effects of basic fibroblast growth factor requires cooperation between CUG and AUG-initiated forms. Cell Regul 2(9):709–718

    Google Scholar 

  21. Crompton AM, Kirn DH (2007) From ONYX-015 to armed vaccinia viruses: the education and evolution of oncolytic virus development. Curr Cancer Drug Targets 7(2):133–139

    Google Scholar 

  22. Czerniecki BJ, Koski GK, Koldovsky U, Xu S, Cohen PA, Mick R, Nisenbaum H, Pasha T, Xu M, Fox KR, Weinstein S, Orel SG, Vonderheidre R, Coukos G, DeMichele A, Araujo L, Spitz FR, Rosen M, Levine BL, June C, Zhang PJ (2007) Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res 67(4):1842–1852

    PubMed  CAS  Google Scholar 

  23. Dang Y, Knutson KL, Goodell V, dela Rosa C, Salazar LG, Higgins D, Childs J, Disis ML (2007) Tumor antigen-specific T-cell expansion is greatly facilitated by in vivo priming. Clin Cancer Res 13(6):1883–1891

    PubMed  CAS  Google Scholar 

  24. Depeiges A, Degroote F, Espagnol MC, Picard G (2006) Translation initiation by non-AUG codons in Arabidopsis thaliana transgenic plants. Plant Cell Rep 25(1):55–61

    PubMed  CAS  Google Scholar 

  25. Dessureault S, Alsarraj M, McCarthy S, Hunter T, Noyes D, Lee D, Harkins J, Seigne J, Jennings R, Antonia SJ (2005) A GM-CSF/CD40L producing cell augments anti-tumor T cell responses. J Surg Res 125(2): 173–181

    PubMed  CAS  Google Scholar 

  26. Dhodapkar NV, Geller MD, Chang DH, Shimizu K, Fujii S, Dhodapkar KM, Krasovsky J (2003) A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med 197(12):1667–1676

    PubMed  CAS  Google Scholar 

  27. Döme B, Tímár J, Dobos J, Mészáros L, Raso E, Paku S, Kenessey I, Ostoros G, Magyar M, Ladányi A, Bogos K, Tóvári J (2006) Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res 66(14):7341–7347

    PubMed  Google Scholar 

  28. Dörrschuck A, Schmidt A, Schnürner E, Glückmann M, Albrecht C, Wölfel C, Lennerz V, Lifke A, Di Natale C, Ranieri E, Gesualdo L, Huber C, Karas M, Wölfel T, Herr W (2004) CD8+ cytotoxic T lymphocytes isolated from allogeneic healthy donors recognize HLA classIa/Ib-associated renal carcinoma antigens with ubiquitous or restricted tissue expression. Blood 104(8):2591–2599

    PubMed  Google Scholar 

  29. Dupont PJ, Warrens AN (2007) Fas ligand exerts its pro-inflammatory effects via neutrophil recruitment but not activation. Immunology 120(1):133–139

    PubMed  CAS  Google Scholar 

  30. Editorial (2007) Plerixafor: AMD 3100, AMD3100, JM 3100, SDZ SID 791. Drugs R D 8(2):113–119

    Google Scholar 

  31. Engels B, Noessner E, Frankenberger B, Blankenstein T, Schendel DJ, Uckert W (2005) Redirecting human T lymphocytes toward renal cell carcinoma specificity by retroviral transfer of T cell receptor genes. Human Gene Ther 16(&):799–810

    CAS  Google Scholar 

  32. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29(16): 15–18S

    PubMed  CAS  Google Scholar 

  33. Fujii S, Nishimura MI, Lotze MT (2005) Regulatory balance between the immune response of tumor antigen-specific T-cell receptor gene-transduced CD8 T cells and the suppressive effect of tolerogenic dendritic cells. Cancer Sci 96(12):897–902

    PubMed  CAS  Google Scholar 

  34. Galili U, Wigglesworth K, Abdel-Motal UM (2007) Intratumoral injection of alpha-gal glycolipids induces xenograft-like destruction and conversion of lesions into endogenous vaccines. J Immunol 178(7):4676–4687

    PubMed  CAS  Google Scholar 

  35. Gilboa E(2007) DC-based cancer vaccines. J Clin Invest 117(5):1195–1203

    PubMed  CAS  Google Scholar 

  36. Goillot E, Combaret V, Ladenstein R, Baubet D, Blay JY, Philip T, Favrot MC (1992) Tumor necrosis factor as an autocrine growth factor for neuroblastoma. Cancer Res 52(11):3194–3200

    PubMed  CAS  Google Scholar 

  37. Gomes AC, Costa T, Carreto L, Santos MA (2006) The molecular mechanism of changes in the genetic code. Mol Biol (Moskva) 40(4):634–639

    Google Scholar 

  38. Gordon K, Fütterer J, Hohn T (1992) Efficient initiation of translation at non-AUG triplets in plant cells. Plant 2(5):809–813

    CAS  Google Scholar 

  39. Han D, Pottin-Clemenceau C, Imro MA, Scudeletti M, Doucet C, Puppo F, Brouty-Boye D, Vedrenne J, Sahraoui Y, Brailly H, Poggi A, Jasmin C, Azzarone B, Indiveri F (1996) IL-2 triggers a tumor progression process in a melanoma cell line MELP derived from a patient whose metastasis increased in size during IL-2/IFN alpha biotherapy. Oncogene 12(5):1015–1023

    PubMed  CAS  Google Scholar 

  40. Hansson L Abdalla AO, Mosfegh A, Choudhury A, Rabbani H, Nilsson B, Osterborg A, Mellstedt H (2007) Long-term idiotype vaccination combined with interleukin-12 (IL-12), or IL-12 and granulocyte macrophage colony-stimulating factor, in early-stage multiple myeloma patients. Clin Cancer Res 13(5):1503–1510

    Google Scholar 

  41. Hamid O, Solomon JC, Scotland R, Garcia M, Sian S, Ye W, Groshen SL, Weber JS (2007) Alum with interkeukin-12 augments immunity to a melanoma vaccine: correlation with time to relapse in patients with resected high-risk disease. Clin Cancer Res 13(1):215–222

    PubMed  CAS  Google Scholar 

  42. Höglund P, Klein E (2006) Natural killer cells and cancer. Semin Cancer Biol 16: 331–332

    PubMed  Google Scholar 

  43. Horak A, Horvath J, Sinkovics JG (1998) Cancer therapy by anti-angiogenesis. Arch Hung Med Assoc 6(2):9

    Google Scholar 

  44. Huez I, Bornes S, Bresson D, Créancier L, Prats H (2001) New vascular endothelial growth factor isoform generates by internal ribosome entry site-driven CUG translation initiation. Mol Endocrinol 15(12):2197–2210

    PubMed  CAS  Google Scholar 

  45. Johnson LA, Heemskerk B, Powell CJ, Cohen CJ, Morgan RA, Dudley ME, Robbins PF, Rosenberg SA (2006) Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. J Immunol 177(9):6548–6559

    PubMed  CAS  Google Scholar 

  46. Kausche S, Wehler T, Schnürer E, Lennerz V, Brenner W, Melchior S, Gröne M, Nonn M, Strand S, Meyer R, Ranieri E, Huber C, Falk CS, Herr W (2006) Superior antitumor in vitro responses of allogeneic matched sibling compared with autologous patient CD8+ T cells. Cancer Res 66(23):11447–11454

    PubMed  CAS  Google Scholar 

  47. Kilinc MO, Aulakh KS, Nair RE, Jones SA, Alard P, Kosiewicz MM, Egilmez NK (2006) Reversing tumor immune suppression with intratumoral IL-12: activation of tumor-associated T effector/memory cells, induction of T suppressor apoptosis, and infiltration of CD8+ T effectors. J Immunol 177(10): 6962–6973

    PubMed  CAS  Google Scholar 

  48. Knuth A, Dippold W, Meyer zum Bueschenfelde KH (1984) Target level blocking of T-cell cytotoxicity for human malignant melanoma by monoclonal antibodies. Cell Immunol 83(2):398–403

    Google Scholar 

  49. Knutson KL, Disis ML (2004) IL-12 enhances the generation of tumor antigen-specific Th11 CD4 T cells during ex vivo expansion. Clin Exp Immunol 135(2):322–329

    PubMed  CAS  Google Scholar 

  50. Köpke AK, Leggatt PA (1991) Initiation of translation at an AUA codon for an archaebacterial protein gene expressed in E. coli. Nucleic Acid Res 19(19):5169–5172

    Google Scholar 

  51. Li ZL, Chang JW, Zhang SM, Ma FL, Zhang HS, Ma TX (2004) Generation of specific cytotoxic T lymphocytes induced by tumor-derived heat shock protein 90-peptide complexes in vitro. Zhonghua Yi Xue Za Zhi (Beijing) 84(20):1701–1704

    CAS  Google Scholar 

  52. Liang H, Hittelman W, Nagarajan L (1996) Ubiquitous expression and cell cycle regulation of the protein kinase PIM-1. Arch Biochem Biophys 330(2):259–265

    PubMed  CAS  Google Scholar 

  53. Marth C, Egle D, Auer D, Rössler J, Zeimet AG, Vergote I, Daxenbichler G (2007) Modulation of CA-125 tumor market shedding in ovarian cancer cells by erlotinib or cetuximab. Gynecol Oncol 105(3):716–721

    PubMed  CAS  Google Scholar 

  54. McKallip R, Li R, Ladisch S (1999) Tumor gangliosides inhibit the tumor-specific immune response. J Immunol 163(7):3718–3726

    PubMed  CAS  Google Scholar 

  55. Mehdi H, Ono E, Gupta KC (1990) Initiation of translation at CUG, GUG, and ACG codons in mammalian cells. Gene 91(2):173–178

    PubMed  CAS  Google Scholar 

  56. Miranda I, Silva, Santos MA (2006) Evolution of the genetic code in yeasts. Yeast 23(3): 203–213

    Google Scholar 

  57. Mosca PJ, Lyerly HK, Clay TM, Morse MA, Lyerly HK (2007) Dendritic cell vaccines. Front Biosci 12:4050–4060

    PubMed  CAS  Google Scholar 

  58. Muralidhar S, Veytsmann G, Chandran B, Ablashi D, Doniger J, Rosenthal LJ (2000) Characterization of the human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus) oncogene, kaposin (ORF K12). J Clin Virol 16(3):203–213

    PubMed  CAS  Google Scholar 

  59. Nair S, Boczkowski D, Fassnacht M, Pisetsky D, Gilboa E (2007) Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res 67(1):371–380

    PubMed  CAS  Google Scholar 

  60. Németh AL, Medveczky P, Tóth J, Siklódi E, Schlett K, Patthy A, Palkovits M, Ovádi J, Tokési N, Németh P, Szilágyi L, Gráf L (2007) Unconventional translation initiation of human trypsinogen 4 at a CUG codon with an N-terminal leucine. A possible means to regulate gene expression. FEBS J 274(6):1610–1620

    Google Scholar 

  61. Noiman S, Yaniv A, Tsach T, Miki T, Tronick SR, Gazit A (1991) The Tat protein of equine infectious anemia virus is encoded by at least three types of transcripts. Virology 184(2): 521–530

    PubMed  CAS  Google Scholar 

  62. Ogino T, Moriai S, Ishida Y, Ishii H, Katayama A, Miyokawa N, Harabuchi Y, Ferrone S (2007) Association of immunoescape mechanisms with Epstein-Barr virus infection in nasopharyngeal carcinoma. Int J Cancer 120(11):2401–2410

    PubMed  CAS  Google Scholar 

  63. Oosterwijk-Wakka JC, Tiemessen DM, Bleumer I, de Vries IJ, Jongmans W, Adema GJ, Debruyne FM, de Mulder PH, Oosterwijk E, Mulder PF (1997) Vaccination of patients with metastatic renal cell carcinoma with autologous dendritic cells pulsed with autologous tumor antigens in combination with interleukin-2: a phase I study. J Immunother 25(6):500–508

    Google Scholar 

  64. Orentas RJ, Kohler ME, Johnson BD (2006) Suppression of anticancer immunity by regulatory T cells: back to the future. Semin Cancer Biol 16:137–149

    PubMed  CAS  Google Scholar 

  65. Peabody DS (1989) Translation initiation at non-AUG triplets in mammalian cells. J Biol Chem 264(9):5031–503

    PubMed  CAS  Google Scholar 

  66. Podack ER (1988) Cytolytic Lymphocytes and Complement: Effectors of the Immune System. Volume II. CRC Press, Boca Raton 1–235

    Google Scholar 

  67. Prats AC, De Billy G, Wang P, Darlix JL (1989) CUG initiation codon used for the synthesis of a cell surface antigen coded by the murine leukemia virus. J Mol Biol 205(2):363–372

    PubMed  CAS  Google Scholar 

  68. Qin JZ, Kamarashev J, Zhang CL, Dummer R, Burg G, Döbbeling U (2001) Constitutive and interleukin-7- and interleukin-15-stimulated DNA binding of STAT and novel factors in cutaneous T cell lymphoma cells. J Invest Dermatol 117(3):583–589

    PubMed  CAS  Google Scholar 

  69. Raval G, Biswas S, Rayman P, Biswas K, SA G, Ghosh S, Thornton M, Hilston C, Das T, Bukowski R, Finke J, Tannenbaum CS (2007) TNF-alpha induction of GM2 expression on renal cell carcinomas promotes T cell dysfunction. J Immunol 178(10):6642–6652

    PubMed  CAS  Google Scholar 

  70. Reeves ME, Royal RE, Lam JS, Rosenberg SA, Hwu P (1996) Retroviral transduction of human denditic cells with a tumor-associated antigen gene. Cancer Res 56(24):5672–5677

    PubMed  CAS  Google Scholar 

  71. Rosenberg SA, Dudley ME (2004) Cancer regression in patients with metastatic melanoma after the transfer of autologous anti-tumor lymphocytes. Proc Natl Acad Sci USA 101(S2):14639–14645

    PubMed  CAS  Google Scholar 

  72. Sadler R, Wu L, Forghani B, Renne R, Zhong W, Herndier B, Ganem D (1999) A complex translational program generates multiple novel proteins from the latently expressed kaposin (K12) locus of Kaposi’s sarcoma-associated herpesvirus. J Virol 73(7):5722–5730

    PubMed  CAS  Google Scholar 

  73. Santos MA, Tuite MF (1995) The CUG codon is decoded in vivo as serine and not lucine in Candida albicans. Nucleic Acid Res 23(9):1481–1486

    PubMed  CAS  Google Scholar 

  74. Saris CJ, Domen J, Berns A (1991) The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J 10(3):655–664

    PubMed  CAS  Google Scholar 

  75. Schlitz RL, Shih DS, Rasty S, Montelaro RC, Rushlow KE (1992) Equine infectious anemia virus gene expression: characterization of the RNA splicing pattern and the protein products encoded by open reading frames S1 and S2. J Virol 66(6):3455–3465

    Google Scholar 

  76. Schmitt A, Hus I, Schmitt M (2007) Dendritic cell vaccines for leukemia patients. Expert Rev Anticancer Ther 7(3):275–283

    PubMed  CAS  Google Scholar 

  77. Schwab SR, Shugart JA, Horng T, Malarkannan S, Shastri N (2004) Unanticipated antigens: translation initiation at CUG with leucine. PLoS Biol 2(11):366 (19 pages)

    Google Scholar 

  78. Shevach EM (2004) Fatal attraction: tumors bec-kon regulatory T cells. Nat Med 10(9):900–901

    PubMed  CAS  Google Scholar 

  79. Shinohara H, Yagita H, Ikawa Y, Oyaizu N (2000) Fas drives cell cycle progression in glioma cells via extracellular signal-regulated kinase activation. Cancer Res 60(6): 1766–1772

    PubMed  CAS  Google Scholar 

  80. Shirako Y (1998) Non-AUG translation initiation in a plant RNA virus: a forty-amino-acid extension is added to the N terminus of the soil-borne wheat mosaic virus capsid protein. J Virol 72(2):1677–2682

    PubMed  CAS  Google Scholar 

  81. Sinkovics JG (1986) The Swedish adjuvant leukocyte IFN trials. In: Medical Oncology an Advanced Course. Sinkovics JG, single author. Marcel Dekker, New York, volume II 1455

    Google Scholar 

  82. Sinkovics JG (1986) A reappraisal of cytotoxic lymphocytes in human tumor immunology. In: Cancer Biology and Therapeutics. Cory JG, Szentivanyi A, editors. Plenum Press, New York London 225–253

    Google Scholar 

  83. Sinkovics JG (1988) Oncogenes and growth factors. CRC Crit Rev Immunol 8(4):217–298

    CAS  Google Scholar 

  84. Sinkovics JG (1995) The graft-versus-leukemia GvL reaction: its early history, value in human bone marrow transplantation and recent developments concerning its mechanism and induction. In: Autologous Marrow and Blood Transplantation. Proc 7th Internat Symposium 1994, Arlington, Texas. Dicke KS. Keating A, editors. Cancer Treatment Research & Educational Institute, Arlington 305–318

    Google Scholar 

  85. Sinkovics JG (1997) Malignant lymphoma arising from natural killer cells: report of the first case in 1970 and newer developments in the FasL ↔ FasR system. Acta Microbiol Immunol Hung 44(3):295–306 (Erratum: the Fas receptor is CD95)

    Google Scholar 

  86. Sinkovics JG (2005) A notable phenomenon recapitulated. A fusion product of a murine lymphoma cell and a leukemia-virus-neutralizing antibody-producer host plasma cell formed spontaneously and secreting the specific antibody continuously. Acta Microbiol Immunol Hung (Budapest) 52(1):1–40

    CAS  Google Scholar 

  87. Sinkovics JG (2005) The first observation (in the late 1960s) of fused lymphoid cells continuously secreting a specific antibody. Bull Mol Med (Cluj Napoca/Kolozsvár) 26(W):61–80

    Google Scholar 

  88. Sinkovics JG (2007) Adult human sarcomas. I. Basic science. Expert Rev Anticancer Ther 7(1):31–56

    PubMed  CAS  Google Scholar 

  89. Sinkovics JG (2007) Adult human sarcomas. II. Medical oncology. Expert Rev Anticancer Ther 7(2):183–210

    PubMed  Google Scholar 

  90. Sinkovics JG, Cabiness JR, Shullenberger CC (1972) Monitoring in vitro immune reactions to solid tumors. Front Rad Ther Oncol 7:99–119

    Google Scholar 

  91. Sinkovics JG, Horvath JC (2000) Vaccination against human cancers. Int J Oncol 16:81–96

    PubMed  CAS  Google Scholar 

  92. Sinkovics JG, Horvath JC (2001) Virological and immunological connotations of apoptotic and anti-apoptotic forces in neoplasia. Int J Oncol 19:473–488

    PubMed  CAS  Google Scholar 

  93. Sinkovics JG, Horvath JC (2005) Human natural killer cells: a comprehensive review. Int J Oncol 27:5–47

    PubMed  CAS  Google Scholar 

  94. Sinkovics JG, Horvath JC, authors, editors (2005) Viral Therapy of Human Cancers. Marcel Dekker, New York iii-xiii 1–829

    Google Scholar 

  95. Sinkovics JG, Horvath JC (2006) Evidence accumulating in support of cancer vaccines combined with chemotherapy: a pragmatic review of past and present efforts. Int J Oncol 29:765–777

    PubMed  CAS  Google Scholar 

  96. Sinkovics JG, Horvath JC (2006) The molecular biology and immunology of glioblastoma multiforme (GMF) with the presentation of an immunotherapy protocol for a clinical trial. Acta Microbiol Immunol Hung 53(4): 367–429

    PubMed  CAS  Google Scholar 

  97. Sinkovics JG, Shirato E, Gyorkey F, Cabiness JR, Howe CD (1970) Relationship between lymphoid neoplasms and immunologic functions. In: Leukemia-Lymphoma. A Collection of Papers Presented at the Fourteenth Annual Clinical Conference on Cancer, 1969 at The University of Texas M. D. Anderson Hospital and Tumor Institute at Houston, Texas. Year Book Medical Publishers, Chicago 53–92

    Google Scholar 

  98. Sinkovics JG, Shirato E, Martin FG, Cabiness JR, White ED (1971) Chondrosarcoma. Immune reactions of a patient to autologous tumor. Cancer 27:782–793

    CAS  Google Scholar 

  99. Sinkovics J, Szakács J, Horváth J, Györkey F, Györkey P, Gergely AS (2006) Kaposi-sarcoma. Orvosi Hetilap (Budapest) 147(13):617–621

    Google Scholar 

  100. Slavin S, Naparstek E, Nagler A, Ackerstein A, Weiss L, Or R (1995) Allogeneic cell-mediated immunotherapy (allo-CMI) using matched peripheral blood lymphocytes for prevention and treatment of relapse following bone marrow transplantation. In: Autologous Marrow and Blood Transplantation. Proc 7th Int Symposium, 1994. Dicke KA, Keating A, editors. The Cancer Treatment Research and Educational Institute, Arlington, Texas 271–280

    Google Scholar 

  101. Stein MN, Shin J, Gudzowaty O, Bernstein AM, Liu LM (2006) Antibody-dependent cytotoxicity to breast cancer targets despite inhibitory KIR signaling. Anticancer Res 26(3A): 1759–1763

    PubMed  CAS  Google Scholar 

  102. Straube C, Wehner R, Wendisch M, Bornhöuser M, Bachmann M, Rieber EP, Schmitz M (2007) Bortezomib significantly impairs the immunostimulatory capacity of human myeloid blood dendritic cells. Leukemia 21(7):1454–1471

    Google Scholar 

  103. Stritzke J, Zunkel T, Steinmann J, Schmitz N, Uharek L, Zeis M (2003) Therapeutic effects of idiotype vaccination can be enhanced by the combination of granulocyte-macrophage colony-stimulating factor and interleukin-1 in a myeloma model. Br J Haematol 120(1): 27–35

    PubMed  CAS  Google Scholar 

  104. Takahashi T, Tanaka M, Ogasawara J, Suda T, Murakami H, Nagata S (1996) Swapping between Fas and granulocyte colony-stimulating factor receptor. J Biol Chem 271(29):17555–17560

    PubMed  CAS  Google Scholar 

  105. Tímár J, Tóth J (2000) Tumor sinuses – vascular channels. Pathol Oncol Res 6(2):83–86

    PubMed  Google Scholar 

  106. Tourkova IL, Shurin GV, Chatta GS, Perez L, Finke J, Whiteside TL, Ferrone S, Shurin MR (2005) Restoration by IL-15 of MHC class I antigen-processing machinery in human dendritic cells inhibited by tumor-derived gangliosides. J Immunol 175(5): 3045–3052

    PubMed  CAS  Google Scholar 

  107. Uzzo RG, Rayman P, Kolenko V, Clark PE, Cathcart MK, Bloom T, Novick AC, Bukowski RM, Hamilton T, Finke JH (1999) Renal cell carcinoma-derived gangliosides suppress nuclear factor-kappaB activation in T cells. J Clin Invest 104(6):769–776

    PubMed  CAS  Google Scholar 

  108. Vagner S, Touriol C, Galy B, Audigier S, Gensac MC, Amalridc F, Bayard F, Prats H, Prats AC (1996) Translation of CUG- but not AUG-initiated forms of human fibroblast growth factor 2 is activated in transformed and stressed cells. J Cell Biol 135(5): 1391–1402

    PubMed  CAS  Google Scholar 

  109. Vöhö-Koskela MJ, Heikkilö JE, Hinkkanen AE (2007) Oncolytic viruses in cancer therapy Cancer Lett 254(2):178–216

    PubMed  Google Scholar 

  110. Vile FG (2006) Viral mediated cell fusion: viral fusion – the making or breaking of a tumor? Gene Ther 13(15):1127–1130

    PubMed  CAS  Google Scholar 

  111. Wada A, Tada Y, Kawamura K, Takiguchi K, Tatsumi K, Kuriyama T, Takenouchi T, O-Wang J, Takawa M (2007) The effects of FasL on inflammation and tumor survival are dependent on its expression levels. Cancer Gene Ther 14(3):262–267

    PubMed  CAS  Google Scholar 

  112. Weber J, Sondak VK, Scotland R, Philips R, Wang F, Rubio V, Stuge TB, Groshen SG, Gee C, Jeffery GG, Sian S, Lee PP (2003) Granulocyte-macrophage-colony-stimulating factor added to a multipeptide vaccine for resected stage II melanoma. Cancer 97(1):186–200

    PubMed  CAS  Google Scholar 

  113. Xia X (2005) Mutation and selection on the anticodon of tRNA genes in vertebrate mitochondrial genomes. Gene 345(1):13–20

    PubMed  CAS  Google Scholar 

  114. Yu W, Fang H (2007) Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets 7(2):141–148

    PubMed  Google Scholar 

References to Addendum

  1. Farag SS, Fehniger TA, Beckner B, Blaser BW, Caliguri MA (2003) New directions in natural killer cell-based immunotherapy of human cancer. Expert Opin Biol Ther (32):237–250

    Google Scholar 

  2. Kurooka M, Kaneda Y (2007) Inactivated Sendai virus particles eradicate tumors by inducing immune responses through blocking regulartory T cells. Cancer Res 67(1):227–236

    PubMed  CAS  Google Scholar 

  3. Powell DJ, de Vries CR, Allen T, Ahmadzadeh M, Rosenberg SA (1997) Inability to mediate prolonged reduction of regulatory T cells after transfer of autologous CD25-depleted PBMC and interleukin-2 after lymphodepleting chemotherapy. J Immunother 30(4):438–4

    Google Scholar 

  4. Shigeru S, Akitoshi N, Subaru MH, Shiozaki A (2007) The balance between cytotoxic NK cells and regulatory NK cells in human pregnancy. J Reprod Immunol June 8 EPUB

    Google Scholar 

  5. Sinkovics JG: 2007 Cytotoxic Lymphocytes in the Armamentarium of the Human Host. Manuscript of the monograph with over 1800 references, 12 Tables and 12 Figures submitted to Publisher.

    Google Scholar 

  6. Woan K, Reddy V (2007) Potential therapeutic role of natural killer cells in cancer. Expert Opin Biol Ther 7(1):17–29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sinkovics, J.G. (2008). Adoptive immunotherapy for human cancers: Flagmen signal first “open road” then “roadblocks.” A narrative synopsis. In: Kiselevsky, M.V. (eds) Atlas Effectors of Anti-Tumor Immunity. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6931-4_1

Download citation

Publish with us

Policies and ethics