Skip to main content

Phase field simulation of domain structures in ferroelectric materials within the context of inhomogeneity evolution

  • Conference paper
  • 1098 Accesses

Abstract

A phase field model for simulating the domain structures in ferroelectric materials is proposed. It takes mechanical and electric fields into account, thus allowing for switching processes due to mechanical and/or electrical loads. The central idea of the model is to take the spontaneous polarisation as an order parameter and to provide an evolution law for this parameter. The concept of evolving inhomogeneities (configuratioanl forces) can be used in this context, as the Spatial distribution of the spontaneous polarisation describes the inhomogeneity of the system. The evolution is found to be in agreement with the second law of thermodynamics and to resemble the (classical) Ginzburg-Landau equation. Numerical simulations show the features of the model and the interaction of domain structures with defects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahluwalja R and Cao W (2000). Influence of dipolar defects on switching behavior in ferroelectrics. Phys Rev B 63: 012103

    Article  Google Scholar 

  • Ahluwalja R and Cao W (2001). Size dependence of domain patterns in a constrained ferroelectric system. J Appl Phys 89(12): 8105–8109

    Article  Google Scholar 

  • Bhattacharya K and Ravichandran G (2003). Ferroelectric perovskites for electromechanical actuation. Acta Mater 51: 5941–5960

    Article  Google Scholar 

  • Cao W and Cross L (1991). Theory of tetragonal twin structures in ferroelectric perovskites with a first-order phase transition. Phys Rev B 44(1): 5–12

    Article  Google Scholar 

  • Flippen R (1975). Domain wall dynamics in ferroelectric/ferroelastic molybdates. J Appl Phys 46(3): 1068–1071

    Article  Google Scholar 

  • Gross D, Kolling S, Mueller R and Schmidt I (2003). Configurational forces and their application in solid mechanics. Eur J Mech A/Solids 22: 669–692

    Article  MATH  MathSciNet  Google Scholar 

  • Goy O, Mueller R and Gross D (2006). Interaction of point defects in piezoelectric materials—numerical simulations in the context of electric fatigue. J Thero Appl Mech 44(4): 819–836

    Google Scholar 

  • Gurtin ME (1996). Generalized Ginzburg-Landau and Cahn-Hillirad equations based on a microforce balance. Physica D 92: 178–192

    Article  MATH  MathSciNet  Google Scholar 

  • Hughes T (2000). The finite element method. Dover, Mineola, New York

    Google Scholar 

  • Kamlah M (2001). Ferroelectric and ferroelastic piezoceramics—modeling of electromechanical hysteresis phenomena. Continuum Mech Thermodyn 13: 219–268

    MATH  Google Scholar 

  • Maugin GA (1988) Continuum mechanics of electromagnetic solids. North-Holland, Amsterdam

    Google Scholar 

  • Maugin GA (1993). Material inhomogeneities in elasticity. Chapman & Hall, London, Glasgow, New York, Tokyo, Melbourne, Madras

    MATH  Google Scholar 

  • Maugin GA and Pouget J (1980). Electroacoustic equations for one-domain ferroelectric bodies. J Acoust Soc Am 68(2): 575–587

    Article  MATH  Google Scholar 

  • McCormack M, Khachaturyan AG and Morris JW (1992). A two-dimensional analysis of the evolution of coherent precipitate in elastic media. Acta metall mater 40(2): 325–336

    Article  Google Scholar 

  • Mueller R and Maugin GA (2002). On material forces and finite element discretizations. Comp Mech 29(1): 52–60

    Article  MATH  MathSciNet  Google Scholar 

  • Mueller R, Kolling St and Gross D (2002). On configurational forces in the context of the finite element method. Int J Numer Methods Eng 53: 1557–1574

    Article  MATH  MathSciNet  Google Scholar 

  • Mueller R, Gross D and Lupascu D (2005). Driving forces on domain walls in ferroelectric materials and interaction with defects. Comp Mat Sci 35: 42–52

    Article  Google Scholar 

  • Müller WH (1998) Zur Simulation des Mikroverhaltens thermo-mechanisch fehlgepasster Verbundwerkstoffe. Fortschritt-Berichte VDI, Reihe 18, Nr. 234, Düsseldorf

    Google Scholar 

  • Schrade D, Mueller R, Gross D, Utschig T, Shur V and Lupascu D (2007). Interaction of domain walls with defects in ferroelectric materials. Mech Mater 39: 161–174

    Article  Google Scholar 

  • Soh A, Song Y and Ni Y (2006). Phase field simualtions of hysteresis and butterfly loops in ferroelectrics subjected to electro-mechanical coupled loading. J Am Ceram Soc 89: 652–661

    Article  Google Scholar 

  • Su Y, Landis C (2006) A non-equlibrium thermodynamics framework for domain evolution; phase field models and finite element implementation. Proceeding to the SPIE

    Google Scholar 

  • Su Y and Landis C (2007). Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation and application to domain wall pinning. J Mech Phys Sol 55: 280–305

    Article  MathSciNet  Google Scholar 

  • Wang J and Zhang T-Y (2006a). Effect of long-range elastic interactions on the toroidal moment of polarisation in a ferroelectric nanoparticle. Appl Phys Lett 88: 182904

    Article  Google Scholar 

  • Wang J and Zhang T-Y (2006b). Size effects in epitaxial ferroelectric islands and thin films. Phys Rev B 73: 144107

    Article  Google Scholar 

  • Wang Y, Chen L and Khachaturyan AG (1993). Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap. Acta metall mater 41(1): 279–296

    Article  Google Scholar 

  • Wang J, Shi S-Q, Chen L-Q, Li Y and Zhang T-Y (2004). Phase field simulations of ferroelectric/ferroelastic polarisation switching. Acta mater 52: 749–764

    Article  Google Scholar 

  • Xiao Y, Shenoy V and Bhattacharya K (2005). Depletion layers and domain walls in semiconducting ferroelectric thin films. Phys Rev Lett 95: 247603

    Article  Google Scholar 

  • Zhang W and Bhattacharya K (2005a). A computational model of ferroelectric domains. Part I: model formulation and domain switching. Acta mater 53: 185–198

    Article  Google Scholar 

  • Zhang W and Bhattacharya K (2005b). A computational model of ferroelectric domains. Part II: grain boundaries and defect pinning. Acta mater 53: 199–209

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media B.V.

About this paper

Cite this paper

Müller, R., Gross, D., Schrade, D., Xu, B.X. (2007). Phase field simulation of domain structures in ferroelectric materials within the context of inhomogeneity evolution. In: Dascalu, C., Maugin, G.A., Stolz, C. (eds) Defect and Material Mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6929-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6929-1_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6928-4

  • Online ISBN: 978-1-4020-6929-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics