Skip to main content

Energy-based r-adaptivity: a solution strategy and applications to fracture mechanics

  • Conference paper
Book cover Defect and Material Mechanics

Abstract

This paper deals with energy based r-adaptivity in finite hyperelastostatics. The focus lies on the development of a numerical solution strategy. Although the concept of improving the accuracy of a finite element solution by minimizing the discrete potential energy with respect to the material node point positions is well-known, the numerical implementation of the underlying minimization problem is difficult. In this paper, energy based r-adaptivity is defined as a minimization problem with inequality constraints. The constraints are introduced to restrict the maximum distortion of the finite element mesh. As a solution strategy for the constrained problem, we use a classical barrier method. Beside the theoretical aspects and the implementation, a numerical experiment is presented. We illustrate the performance of the proposed r-adaptivity in the case of a cracked specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armero F and Love E (2003). An arbitrary Lagrangian–Eulerian finite element method for finite strain plasticity. Int J Numer Meth Eng 57: 471–508

    Article  MATH  MathSciNet  Google Scholar 

  • Askes H, Kuhl E and Steinmann P (2004). An ALE formulation based on spatial and material settings of continuum mechanics. Part 2: classification and applications. Comput Methods Appl Mech Eng 193: 4223–4245

    Article  MATH  MathSciNet  Google Scholar 

  • Bathe KJ and Sussman TD (1983). An algorithm for the construction of optimal finite element meshes in linear elasticity. Comput Methods Nonlinear Solids Struct Mech 54: 15–36 ASME, AMD

    Google Scholar 

  • Bertsekas DP (1995). Nonlinear programming. Athena Scientific, Belmont, MA

    MATH  Google Scholar 

  • Braun M (1997). Configurational forces induced by finite-element discretization. Proc Estonian Acad Sci Phys Math 46: 24–31

    MATH  MathSciNet  Google Scholar 

  • Carpenter WC and Zendegui S (1982). Optimum nodal locations for a finite element idealization. Eng Optim 5: 215–221

    Article  Google Scholar 

  • Carroll WE and Barker RM (1973). A theorem for optimum finite-element idealizations. Int J Solids Struct 9: 883–895

    Article  MathSciNet  Google Scholar 

  • Felippa CA (1976a). Numerical experiments in finite element grid optimization by direct energy search. Appl Math Model 1: 239–244

    Article  Google Scholar 

  • Felippa CA (1976b). Optimization of finite element grids by direct energy search. Appl Math Model 1: 93–96

    Article  MATH  Google Scholar 

  • Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic Press

    Google Scholar 

  • Holzapfel GA (2000). Nonlinear solid mechanics. Wiley, Chichester

    MATH  Google Scholar 

  • Hughes TJR (1987). The finite element method. Dover Publications, New York

    MATH  Google Scholar 

  • Jarre S (2004). Optimierung. Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Knupp PM (2000a). Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part I – a framework for surface mesh optimization. Int J Numer Meth Eng 48: 401–420

    Article  MATH  Google Scholar 

  • Knupp PM (2000b). Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II – a framework for volume mesh optimization and the condition number of the Jacobian matrix. Int J Numer Meth Eng 48: 1165–1185

    Article  MATH  Google Scholar 

  • Kuhl E, Askes H and Steinmann P (2004). An ALE formulation based on spatial and material settings of continuum mechanics. Part 1: generic hyperelastic formulation. Comput Methods Appl Mech Eng 193: 4207–4222

    Article  MATH  MathSciNet  Google Scholar 

  • Luenberger DG (1973). Introduction to linear and nonlinear programming. Addison-Wesley Publishing Company, Reading

    MATH  Google Scholar 

  • Marsden JE and Hughes TJR (1983). Mathematical foundations of elasticity. Dover Publications, New York

    MATH  Google Scholar 

  • McNeice GM and Marcal PV (1973). Optimization of finite element grids based on minimum potential energy. Trans ASME J Eng Ind 95(1): 186–190

    Google Scholar 

  • Mosler J and Ortiz M (2006). On the numerical implementation of varational arbitrary Lagrangian–Eulerian (VALE) formulations. Int J Numer Meth Eng 67: 1272–1289

    Article  MATH  MathSciNet  Google Scholar 

  • Mueller R and Maugin GA (2002). On material forces and finite element discretizations. Comput Mech 29: 52–60

    Article  MATH  MathSciNet  Google Scholar 

  • Mueller R, Kolling S and Gross D (2002). On configurational forces in the context of the finite element method. Int J Numer Meth Eng 53: 1557–1574

    Article  MATH  MathSciNet  Google Scholar 

  • Mueller R, Gross D and Maugin GA (2004). Use of material forces in adaptive finite element methods. Comput Mech 33: 421–434

    Article  MATH  Google Scholar 

  • Rajagopal A, Gangadharan R and Sivakumar SM (2006). On material forces and finite element discretizations. Int J Comput Meth Eng Sci Mech 7: 241–262

    Article  Google Scholar 

  • Steinmann P, Ackermann D and Barth FJ (2001). Application of material forces to hyperelastostatic fracture mechanics. Part II: computational setting. Int J Solids Struct 38: 5509–5526

    Article  MATH  Google Scholar 

  • Sussman T and Bathe KJ (1985). The gradient of the finite element variational indicator with respect to nodal point co–ordinates: an explicit calculation and application in fracture mechanics and mesh optimization. Int J Numer Meth Eng 21: 763–774

    Article  MATH  Google Scholar 

  • Thoutireddy P (2003) Variational arbitrary Lagrangian–Eulerian method. Ph.D. Thesis, California Institute of Technology, Passadena, California

    Google Scholar 

  • Thoutireddy P and Ortiz M (2004). A variational r-adaption and shape-optimization method for finite-deformation elasticity. Int J Numer Meth Eng 61: 1–21

    Article  MATH  MathSciNet  Google Scholar 

  • Wriggers P (2001). Nichtlineare finite-element-methoden. Springer-Verlag, Berlin

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Scherer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media B.V.

About this paper

Cite this paper

Scherer, M., Denzer, R., Steinmann, P. (2007). Energy-based r-adaptivity: a solution strategy and applications to fracture mechanics. In: Dascalu, C., Maugin, G.A., Stolz, C. (eds) Defect and Material Mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6929-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6929-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6928-4

  • Online ISBN: 978-1-4020-6929-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics