Advertisement

Abstract

Grape is a major crop worldwide in which production is primarily driven by the ability to grow high-quality fruit. Breeding objectives vary by region and market class of grape, but many programs seek to combine high quality fruit with improved disease resistance and environmental adaptation, or to continue advances in quality attributes. Grapevines are predominantly a grafted crop, making grape rootstocks, and rootstock breeding, vitally important in the growth of the global viticulture industry. There are vast germplasm resources available within the genus Vitis, but worldwide production is dominated by cultivars of one species, V. vinifera. Species other than V. vinifera are of significant interest as useful sources of desirable traits in many modern breeding programs. Little is known concerning the genetic control of most traits in grape beyond the fact that many are quantitatively controlled. Substantial international effort has occurred in the development of molecular genetic and genomic resources for grape. Many tools are now in place to identify the causal genes underlying important traits and to better understand the allelic diversity that exists in important genes.

Keywords

Powdery Mildew Vitis Vinifera Grape Berry Table Grape Wine Grape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam-Blondon A-F, Bernole A, Faes G, Lamoureux D, Pateyron S, Grando MS, Caboche M, Velasco R, Chalhoub B (2005) Construction and characterization of BAC libraries from major grapevine cultivars. Theor Appl Genet 110:1363–1371PubMedCrossRefGoogle Scholar
  2. Adam-Blondon A-F, Lahogue-Esnault F, Bouquet A, Boursiquot JM, This P (2001) Usefulness of two SCAR markers for marker-assisted selection of seedless grapevine cultivars. Vitis 40:147–155Google Scholar
  3. Adam-Blondon A-F, Roux C, Claux D, Butterlin G, Merdinoglu D, This P (2004) Mapping 245 SSR markers on theVitis vinifera genome: a tool for grape genetics. Theor Appl Genet 109:1017–1027PubMedCrossRefGoogle Scholar
  4. Ageorges A, Fernandez L, Vialet S, Merdinoglu D, Terrier N, Romieu C (2006) Four specific isogenes of the anthocyanin metabolic pathway are systematically co-expressed with the red colour of grape berries. Plant Sci 170:372–383CrossRefGoogle Scholar
  5. Ageorges A, Issaly R, Picaud S, Delrot S, Romieu C (2000) Identification and functional expression in yeast of a grape berry sucrose carrier. Plant Physiol Biochem 38:177–185CrossRefGoogle Scholar
  6. Akihama T, Omura M (1986) Preservation of Fruit Tree Pollen. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 1. Springer, Berlin, pp 101–112Google Scholar
  7. Alleweldt G, Dettweiler E (1994) The genetic resources of Vitis world list of grapevine collections, 2nd edn, BAZ IRZ Geilweilerhof, SiebeldingenGoogle Scholar
  8. Alleweldt G, Spiegel-Roy P, Reisch BI (1990) Grapes (Vitis). In: Moore JN (ed) Genetic resources of temperate fruit and nut crops, Acta Hortic 290:289–327Google Scholar
  9. Antcliff AJ (1980) Inheritance of sex in Vitis. Ann Amelior Plant 30:113–122Google Scholar
  10. Anwar SA, McKenry MV, Ramming DW (2002) A search for more durable grape rootstock resistance to root-knot nematode. Am J Enol Vitic 53:19–23Google Scholar
  11. Aradhya MK, Dangl GS, Prins BH, Boursiquot JM, Walker MA, Meredith CP, Simon CJ (2003) Genetic structure and differentiation in cultivated grape, Vitis vinifera L. Genet Res 81:179–182PubMedCrossRefGoogle Scholar
  12. Arroyo-Garcia R, Ruiz-García L, Bolling L, Ocete R, López MA, Arnold C, Ergul A, Söylemezo Lu G, Uzun HI, Cabello F, Ibáñez J, Aradhya MK, Atanassov A, Atanassov I, Balint S, Cenis JL, Costantini L, others (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15:3707–3714PubMedCrossRefGoogle Scholar
  13. Ashikawa K (1972) New grape variety ‘Takao’. Bull Tokyo Agric Exp Sta 7:1–9Google Scholar
  14. Atanassova R, Leterrier M, Gaillard C, Agasse A, Sagot E, Coutos-Thévenot P, Delrot S (2003) Sugar-regulated expression of a putative hexose transport gene in grape. Plant Physiol 131:326–334PubMedCrossRefGoogle Scholar
  15. Bais A, Murphy PJ, Dry IB (2000) The molecular regulation of stilbene phytoalexin biosynthesis in Vitis vinifera during grape berry development. Aust J Plant Physiol 27:425–433CrossRefGoogle Scholar
  16. Bamzai RD, Randhawa GS (1967) Effects of certain growth substances and boric acid on germination, tube growth and storage of grape pollen (Vitis spp.). Vitis 6:269–277Google Scholar
  17. Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A, Adam-Blondon A-F, Thomas MR, Dry I (2005) Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor Appl Genet 111:370–377PubMedCrossRefGoogle Scholar
  18. Barnaud A, Lacombe T, Doligez A (2005) Linkage disequilibrium in cultivated grapevine. Vitis vinifera L. Theor Appl Genet 112:708–716CrossRefGoogle Scholar
  19. Barrett HC (1955) Black rot resistance of the foliage on seedlings in selected grape progenies. Proc Am Soc Hortic Sci 66:220–224Google Scholar
  20. Barritt BH, Einset J (1969) Inheritance of 3 Major Fruit Colors in Grapes. J Am Soc Hortic Sci 94:87–89Google Scholar
  21. Becker H, Sopp E (1990) Rootstocks with immunity to phylloxera and nematode resistance. In: Proceedings of the 5th International Symposium on Grape Breeding. Vitis special issue, St. Martin/Pfalz p. 294Google Scholar
  22. Benjak A, Konrad J, Blaich R, Forneck A (2006) Different DNA extraction methods can cause different AFLP profiles in grapevine (Vitis vinifera L.). Vitis 45:15–21Google Scholar
  23. Bloodworth PJ, Nesbitt WB, Barker KR (1980) Resistance to root knot nematodes in Euvitis × Muscadinia hybrids. In: Proceedings of the 3rd International Symposium on Grape Breeding, Davis, CA, pp 275–292Google Scholar
  24. Bogs J, Downey MO, Harvey JS, Ashton AR, Tanner GJ, Robinson SP (2005) Proanthocyanidin Synthesis and Expression of Genes Encoding Leucoanthocyanidin Reductase and Anthocyanidin Reductase in Developing Grape Berries and Grapevine Leaves. Plant Physiol 139:652–663Google Scholar
  25. Bogs J, Ebadi A, McDavid D, Robinson SP (2006) Identification of the Flavonoid Hydroxylases from Grapevine and Their Regulation during Fruit Development. Plant Physiol 140:279–291Google Scholar
  26. Boss PK, Davies C, Robinson SP (1996a) Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L cv. Shiraz grape berries and the implications for pathway regulation. Plant Physiol 111:1059–1066Google Scholar
  27. Boss PK, Davies C, Robinson SP (1996b) Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol Biol 32:565–569CrossRefGoogle Scholar
  28. Boss PK, Sreekantan L, Thomas MR (2006) A grapevine TFL1 homologue can delay flowering and alter floral development when overexpressed in heterologous species. Funct Plant Biol 33:31–41CrossRefGoogle Scholar
  29. Boss PK, Thomas MR (2002) Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature 416:847–850PubMedCrossRefGoogle Scholar
  30. Boubals D (1966) Heredite de la resistance au phylloxera radicole chez la vigne. Ann Amelior Plantes 11:401–500Google Scholar
  31. Bouquet A (1981) Resistance to grape fanleaf virus in Muscadine grape inoculated with Xiphinema index. Plant Dis 65:791–793CrossRefGoogle Scholar
  32. Bouquet A (1986) Introduction dans l’espece Vitis vinifera L. d’un caractere de resistance a l’oidium (Uncinula necator Schw. Burr.) issu de l’espece Muscadinia rotundifolia (Michx.) Small. Vigne Vini 13, Suppl 12:141–146Google Scholar
  33. Bouquet A, Danglot Y (1996) Inheritance of seedlessness in grapevine (Vitis vinifera L). Vitis 35:35–42Google Scholar
  34. Bouquet A, Davis HP, Danglot Y, Rennes C (1989) In-ovulo and in vitro embryo culture for breeding seedless table grapes (Vitis vinifera L.). Agron J 9:565–574CrossRefGoogle Scholar
  35. Bowers J, Boursiquot J-M, This P, Chu K, Johansson H, Meredith C (1999a) Historical Genetics: the parentage of Chardonnay, Gamay, and other wine grapes of Northeastern France. Science 285:1562–1565CrossRefGoogle Scholar
  36. Bowers JE, Bandman EB, Meredith CP (1993) DNA fingerprint characterization of some wine grape cultivars. Am J Enol Vitic 44:266–273Google Scholar
  37. Bowers JE, Dangl GS, Meredith CP (1999b) Development and characterization of additional microsatellite DNA markers for grape. Am J Enol Vitic 50:243–246Google Scholar
  38. Bowers JE, Dangl GS, Vignani R, Meredith CP (1996) Isolation and characterization of new polymorphic simple sequence repeat loci in grape. Genome 39:628–633PubMedGoogle Scholar
  39. Bowers JE, Meredith CP (1996) Genetic similarities among wine grape cultivars revealed by restriction fragment-length polymorphism (RFLP) analysis. J Am Soc Hortic Sci 121:620–624Google Scholar
  40. Bowers JE, Meredith CP (1997) The parentage of a classic wine grape, Cabernet Sauvignon. Nature Genetics 16:84–87PubMedCrossRefGoogle Scholar
  41. Boyden LE (2005) Allelism of root-knot nematode resistance and genetics of leaf traits in grape rootstocks. Cornell University, IthacaGoogle Scholar
  42. Burger AL, Botha FC (2004) Ripening-related gene expression during fruit ripening in Vitis vinifera L. cv. Cabernet Sauvignon and Clairette blanche. Vitis 43:59–64Google Scholar
  43. Cahoon GA (1998) French hybrid grapes in North America. In: Ferree DC (ed) A history of fruit varieties. Good Fruit Grower Magazine, Yakima, Washington, pp 152–168Google Scholar
  44. Cain DW, Emershad RL, Tarailo R (1983) In-ovulo embryo culture and seedling development of seeded and seedless grapes (Vitis vinifera L.). Vitis 22:9–14Google Scholar
  45. Cakir B, Agasse A, Gaillard C, Saumonneau A, Delrot S, Atanassova R (2003) A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell 15:2165–2180PubMedCrossRefGoogle Scholar
  46. Campbell C (2005) The botanist and the vintner: How wine was saved for the world. Algonquin Books of Chapel Hill, Chapel HillGoogle Scholar
  47. Castellarin SD, Di Gaspero G, Marconi R, Nonis A, Peterlunger E, Paillard S, Adam-Blondon A-F, Testolin R (2006) Colour variation in red grapevine (Vitis vinifera L.): genomic organisation, expression of flavonoid 3’-hydroxylase, flavonoid 3’,5’-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genomics 7:12PubMedCrossRefGoogle Scholar
  48. Cattell H, Miller LS (1980) The wines of the East. Vol. III. native American grapes. L& H Photojournalism, Lancaster, PAGoogle Scholar
  49. Cervera M-T, Cabezas JA, Sancha JC, Martinez de Toda F, Martinez-Zapater JM (1998) Application of AFLPs to the characterization of grapevine Vitis vinifera L. genetic resources. A case study with accessions from Rioja (Spain). Theor Appl Genet 97:51–59CrossRefGoogle Scholar
  50. Comeaux BL (1987) A new Vitis (Vitaceae) species from Veracruz, Mexico. SIDA 12:273–277Google Scholar
  51. Conde C, Agasse A, Glissant D, Tavares R, Geros H, Delrot S (2006) Pathways of glucose regulation of monosaccharide transport in grape cells. Plant Physiol 141:1563–1577PubMedCrossRefGoogle Scholar
  52. Cousins P, Walker MA (2002) Genetics of resistance to Meloidogyne incognita in crosses of grape rootstocks. Theor Appl Genet 105:802–807PubMedCrossRefGoogle Scholar
  53. Coutos-Thevenot P, Poinssot B, Bonomelli A, Yean H, Breda C, Buffard D, Esnault R, Hain R, Boulay M (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter. J Exp Bot 52:901–910PubMedCrossRefGoogle Scholar
  54. Cramer G, Ergül A, Grimplet J, Tillett R, Tattersall E, Bohlman M, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch K, Schooley D, Cushman J (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134PubMedCrossRefGoogle Scholar
  55. Crespan M (2003) The parentage of Muscat of Hamburg. Vitis 42:193–197Google Scholar
  56. Da Silva FG, Iandolino A, Al-Kayal F, Bohlmann MC, Cushman MA, Lim H, Ergul A, Figueroa R, Kabuloglu EK, Osborne C, Rowe J, Tattersall E, Leslie A, Xu J, Baek JM, Cramer GR, Cushman JC, Cook DR (2005) Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple Vitis species and development of a compendium of gene expression during berry development. Plant Physiol 139:574–597PubMedCrossRefGoogle Scholar
  57. Dalbo MA, Ye GN, Weeden NF, Steinkellner H, Sefc KM, Reisch BI (2000) A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome43:333–340PubMedCrossRefGoogle Scholar
  58. Dalbo MA, Ye GN, Weeden NF, Wilcox WF, Reisch BI (2001) Marker-assisted selection for powdery mildew resistance in grape. J Am Soc Hortic Sci 126:83–89Google Scholar
  59. Dangl GS, Mendum ML, Prins BH, Walker MA, Meredith CP, Simon CJ (2001) Simple sequence repeat analysis of a clonally propagated species: A tool for managing a grape germplasm collection. Genome 44:432–438CrossRefGoogle Scholar
  60. Davies C, Shin R, Liu W, Thomas MR, Schachtman DP (2006) Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. J Exp Bot 57:3209–3216PubMedCrossRefGoogle Scholar
  61. Dearing C (1917) The production of self-fertile muscadine grapes. Proc Am Soc Hortic Sci 14:30–34Google Scholar
  62. Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, Richard T, Carde J-P, Mérillon J-M, Hamdi S (2006) Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol 140:499–511PubMedCrossRefGoogle Scholar
  63. Detjen LR (1917) The inheritance of sex inVitis rotundifolia. N C Agric Exp Stn Tech Bull, 12:1–42Google Scholar
  64. Dettweiler E, Jung A, Zyprian E, Topfer R (2000) Grapevine cultivar Muller-Thurgau and its true to type descent. Vitis 2:63–65Google Scholar
  65. Di Gaspero G, Cipriani G (2002) Resistance gene analogs are candidate markers for disease-resistance genes in grape (Vitis spp.). Theor Appl Genet 106:163–172PubMedGoogle Scholar
  66. Di Gaspero G, Cipriani G (2003) Nucleotide binding site/leucine-rich repeats, Pto-like and receptor-like kinases related to disease resistance in grapevine. Mol Genet Genomics 269:612–623PubMedCrossRefGoogle Scholar
  67. Doligez A, Audiot E, Baumes R, This P (2006) QTLs for muscat flavor and monoterpenic odorant content in grapevine (Vitis vinifera L.). Mol Breed 18:109–125CrossRefGoogle Scholar
  68. Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S, Meredith C, Edwards J, This P (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 105:780–795PubMedCrossRefGoogle Scholar
  69. Donald TM, Pellerone F, Adam-Blondon AF, Bouquet A, Thomas MR, Dry IB (2002) Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theor Appl Genet 104:610–618PubMedCrossRefGoogle Scholar
  70. Doucleff M, Jin Y, Gao F, Riaz S, Krivanek AF, Walker MA (2004) A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica. Theor Appl Genet 109:1178–1187PubMedCrossRefGoogle Scholar
  71. Downey MO, Harvey JS, Robinson SP (2003) Synthesis of flavonols and expression of flavonol synthase genes in the developing grape berries of Shiraz and Chardonnay (Vitis vinifera L.). Aust J Grape Wine Res 9:110–121Google Scholar
  72. Downey MO, Harvey JS, Robinson SP (2004) The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Aust J Grape Wine Res 10:55–73CrossRefGoogle Scholar
  73. Dunstan RT (1962) Vinifera-type grapes for the East. Fruit Varieties Hortic Dig 17:6–8Google Scholar
  74. During H (1986) Testing for drought tolerance in grapevine scions. Angewandte Botanik 60:103–111Google Scholar
  75. Eibach R, Diehl H, Alleweldt G (1989) Untersuchungen zur Vererbung von Resistenzeigenschaften bei Reben gegen Oidium tuckeri, Plasmopara viticola und Botrytis cinerea. Vitis 28:209–228Google Scholar
  76. Einset J, Lamb B (1951) Chimeral Sports of Grapes. J Hered 42:158–162.Google Scholar
  77. Einset J, Pratt C (1954) Giant Sports of Grapes. Proc Am Soc Hortic Sci 63:251–256Google Scholar
  78. Einset J, Pratt C (1975) Grapes. In: Janick J, Moore JN (eds) Advances in fruit breeding. Purdue University Press, West Lafayette, IN, pp 130–153Google Scholar
  79. Emershad RL, Ramming DW (1984) In-ovulo embryo culture of Vitis vinifera L. cv. ‘Thompson Seedless’. Am J Bot 71:873–877CrossRefGoogle Scholar
  80. Ergul A, Kazan K, Aras S, Cevik V, Celik H, Soylemezoglu G (2006) AFLP analysis of genetic variation within the two economically important Anatolian grapevine (Vitis vinifera L.) varietal groups. Genome 49:467–475PubMedCrossRefGoogle Scholar
  81. Espinoza C, Vega A, Medina C, Schlauch K, Cramer G, Arce-Johnson P (2007) Gene expression associated with compatible viral diseases in grapevine cultivars. Funct Integr Genomics 7:95–110PubMedCrossRefGoogle Scholar
  82. Fanizza G, Lamaj F, Costantini L, Chaabane R, Grando MS (2005) QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet 111:658–664PubMedCrossRefGoogle Scholar
  83. Fanizza G, Raddi P (1973) The heritability of fruit ripening date in Vitis vinifera L. Vitis 12:93–96Google Scholar
  84. Faria MA, Magalhaes R, Ferreira MA, Meredith CP, Monteiro FF (2000) Vitis vinifera must varietal authentication using microsatellite DNA analysis (SSR). J Agric Food Chem 48:1096–1100PubMedCrossRefGoogle Scholar
  85. Fatahi R, Ebadi A, Bassil N, Mehlenbacher SA, Zamani Z (2003) Characterization of Iranian grapevine cultivars using microsatellite markers. Vitis 42:185–192Google Scholar
  86. Fei Z, Tang X, Alba RM, White JA, Ronning CM, Martin GB, Tanksley SD, Giovannoni JJ (2004) Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J 40:47–59PubMedCrossRefGoogle Scholar
  87. Fennell JL (1948) Inheritance studies with the tropical grape. J Hered 39:54–64Google Scholar
  88. Fernandez L, Doligez A, Lopez G, Thomas MR, Bouquet A, Torregrosa L (2006a) Somatic chimerism, genetic inheritance, and mapping of the fleshless berry (flb) mutation in grapevine (Vitis vinifera L.). Genome 49:721–728CrossRefGoogle Scholar
  89. Fernandez L, Romieu C, Moing A, Bouquet A, Maucourt M, Thomas MR, Torregrosa L (2006b) The grapevine fleshless berry mutation. A unique genotype to investigate differences between fleshy and nonfleshy fruit. Plant Physiol 140:537–547CrossRefGoogle Scholar
  90. Fillion L, Ageorges A, Picaud S, Coutos-Thévenot P, Lemoine R, Romieu C, Delrot S (1999) Cloning and expression of a hexose transporter gene expressed during the ripening of grape berry. Plant Physiol 120:1083–1093PubMedCrossRefGoogle Scholar
  91. Firoozabady E, Olmo HP (1982a) The heritability of resistance to root-knot nematode (Meloidogyne incognita acrita CHIT.) in Vitis viniera × V. rotundifolia hybrid derivatives. Vitis 21:136–144Google Scholar
  92. Firoozabady E, Olmo HP (1982b) Resistance to grape phylloxera in Vitis vinifera × V. rotundifolia grape hybrids. Vitis 21:1–4Google Scholar
  93. Firoozabady E, Olmo HP (1987) Heritability and correlation studies of certain quantitative traits in table grapes, Vitis spp. Vitis 26:132–146Google Scholar
  94. Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards K, Töpfer R, Zyprian E (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515PubMedCrossRefGoogle Scholar
  95. Franks T, Botta R, Thomas MR (2002) Chimerism in grapevines: implications for cultivar identity, ancestry and genetic improvement. Theor Appl Genet 104:192–199PubMedCrossRefGoogle Scholar
  96. Galet P (1988) Cepages et vignobles de France. Vol. 1 Les Vignes Americaines, 2nd edn. Charles Dehan, MontpellierGoogle Scholar
  97. Ganeshan S (1985) Cryogenic preservation of grape (Vitis vinifera L.) pollen. Vitis 24:169–173Google Scholar
  98. Ganeshan S, Alexander MP (1990) Fertilizing ability of cryopreserved grape (Vitis vinifera L.) pollen. Vitis 29:145–150Google Scholar
  99. Goldy RG, Emershad RL, Ramming DW, Chaparro J (1988) Embryo culture as a means of introgressing seedlessness from Vitis vinifera to V. rotundifolia. Hortscience 23:886–889Google Scholar
  100. Goldy RG, Ramming DW, Emershad RL, Chaparro JX (1989) Increasing production of Vitis vinifera × V. rotundifolia hybrids through embryo rescue. Hortscience 24:820–822Google Scholar
  101. Goto-Yamamoto N, Mouri H, Azumi M, Edwards KJ (2006) Development of grape microsatellite markers and microsatellite analysis including oriental cultivars. Am J Enol Vitic 57:105–108Google Scholar
  102. Grando MS, Bellin D, Edwards KJ, Pozzi C, Stefanini M, Velasco R (2003) Molecular linkage maps of Vitis vinifera L. and Vitis riparia Mchx. Theor Appl Genet 106:1213–1224PubMedGoogle Scholar
  103. Grassi F, Labra M, Imazio S, Spada A, Sgorbatti S, Scienza A, Saqla F (2003) Evidence of a secondary grapevine domestication centre detected by SSR analysis. Theor Appl Genet 107:1315–1320PubMedCrossRefGoogle Scholar
  104. Guillen P, Guis M, Martínez-Reina G, Colrat S, Dalmayrac S, Deswarte C, Bouzayen M, Roustan JP, Fallot J, Pech JC, Latché A (1998) A novel NADPH-dependent aldehyde reductase gene from Vigna radiata confers resistance to the grapevine fungal toxin eutypine. Plant J 16:335–343PubMedCrossRefGoogle Scholar
  105. Hashizume T, Iizuka M (1981) Induction of female organs in male flowers of Vitis species by zeatin and dihydrozeatin. Phytochemistry 10:2653–2655CrossRefGoogle Scholar
  106. He P, Lixin N (1989) Study of cold hardiness in the wild Vitis native to China. Acta Hortic Sinica 16:81–88Google Scholar
  107. He PH, Wang G (1986) Studies on the resistance of wild Vitis species native to china to downy mildew, Plasmopora viticola (Berk. et Curtis) Berl. et de Toni. Acta Hortic Sinica 13:17–24Google Scholar
  108. Hebert D, Kikkert JR, Smith FD, Reisch BI (1993) Optimization of biolistic transformation of embryogenic grape cell suspensions. Plant Cell Rep 13:405–409Google Scholar
  109. Hedrick UP, Anthony RD (1915) Inheritance of certain characters of grapes. NY State Agric Coll Tech Bull No 45, pp 3–19Google Scholar
  110. Hirabayashi T, Kozaki I, Akihama T (1976) In vitro differentiation of shoots from anther callus in Vitis. Hortscience 11:511–512Google Scholar
  111. Hocquigny S, Pelsey F, Dumas V, Kindt S, Heloir M-C, Merdinoglu D (2004) Diversification within grapevine cultivars goes through chimeric states. Genome 47:579–589PubMedCrossRefGoogle Scholar
  112. Hvarleva T, Rusanov K, Lefort F, Tsvetkov I, Atanassov A, Atanassov I (2004) Genotyping of Bulgarian Vitis vinifera L. cultivars by microsatellite analysis. Vitis 43:27–34Google Scholar
  113. Iocco P, Franks T, Thomas MR (2001) Genetic Transformation of Major Wine Grape Cultivars of Vitis vinifera L. Transgenic Res V 10:105–112CrossRefGoogle Scholar
  114. Jabco JP, Nesbitt WB, Werner DJ (1985) Resistance of various classes of grapes to the bunch and muscadine grape forms of black rot. J Am Soc Hortic Sci 110:762–765Google Scholar
  115. Joly D, Perrin M, Gertz C, Kronenberger J, Demangeat G, Masson JE (2004) Expression analysis of flowering genes from seedling-stage to vineyard life of grapevine cv. Riesling. Plant Sci 166:1427–1436CrossRefGoogle Scholar
  116. Kikkert JR, Hebert-Soule D, Wallace PG, Striem MJ, Reisch BI (1996) Transgenic plantlets of ‘Chancellor’ grapevine (Vitis sp.) from biolistic transformation of embryogenic cell suspensions. Plant Cell Rep 15:311–316CrossRefGoogle Scholar
  117. Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982PubMedCrossRefGoogle Scholar
  118. Kobayashi S, Ishimaru M, Ding CK, Yakushiji H, Goto N (2001) Comparison of UDP-glucose: Flavonoid 3-O-glucosyltransferase (UFGT) gene sequences between white grapes (Vitis vinifera) and their sports with red skin. Plant Sci 160:543–550PubMedCrossRefGoogle Scholar
  119. Krivanek AF, Famula TR, Tenscher A, Walker AR (2005) Inheritance of resistance to Xylella fastidiosa within a Vitis rupestris × Vitis arizonica population. Theor Appl Genet 111:110–119PubMedCrossRefGoogle Scholar
  120. Krivanek AF, Riaz S, Walker MA (2006) Identification and molecular mapping of PdR1, a primary resistance gene to Pierce’s disease in Vitis. Theor Appl Genet 112:1125–1131PubMedCrossRefGoogle Scholar
  121. Krul WR, Worley JF (1977) Formation of adventitious embryos in callus cultures of ‘Seyval’, a French hybrid grape. J Am Soc Hortic Sci 102:360–363Google Scholar
  122. Labra M, Imazio S, Grassi F, Rossoni M, Citterio S, Sgorbati S, Scienza A, Failla O (2003) Molecular approach to assess the origin of cv. Marzemino. Vitis 42:137–140Google Scholar
  123. Labra M, Winfield M, Ghiani A, Grassi F, Sala F, Scienza A, Failla O (2001) Genetic studies on Trebbiano and morphologically related varieties by SSR and AFLP markers. Vitis 40:187–190Google Scholar
  124. Ladoukakis ED, Lefort F, Sotiri P, Bacu A, Kongjika E, Roubelakis-Angelakis KA (2005) Genetic characterization of Albanian grapevine cultivars by microsatellite markers. J Int Des Sci De La Vigne Et Du Vin 39:109–119Google Scholar
  125. Lahogue F, This P, Bouquet A (1998) Identification of a codominant scar marker linked to the seedlessness character in grapevine. Theor Appl Genet 97:950–959CrossRefGoogle Scholar
  126. Lamoureux D, Bernole A, Le Clainche I, Tual S, Thareau V, Paillard S, Legeai F, Dossat C, Wincker P, Oswald M, Merdinoglu D, Vignault C, Delrot S, Caboche M, Chalhoub B, Adam-Blondon A-F (2006) Anchoring of a large set of markers onto a BAC library for the development of a draft physical map of the grapevine genome. Theor Appl Genet 113:344–356PubMedCrossRefGoogle Scholar
  127. Laquitaine L, Gomes E, Francois J, Marchive C, Pascal S, Hamdi S, Atanassova R, Delrot S, Coutos-Thevenot P (2006) Molecular basis of ergosterol-induced protection of grape against Botrytis cinerea: Induction of type I LTP promoter activity, WRKY, and stilbene synthase gene expression. Mol Plant Microbe Interact 19:1103–1112PubMedCrossRefGoogle Scholar
  128. Legrand V, Dalmayrac S, Latche A, Pech J-C, Bouzayen M, Fallot J, Torregrosa L, Bouquet A, Roustan J-P (2003) Constitutive expression of Vr-ERE gene in transformed grapevines confers enhanced resistance to eutypine, a toxin from Eutypa lata. Plant Sci 164:809–814CrossRefGoogle Scholar
  129. Leterrier M, Atanassova R, Laquitaine L, Gaillard C, Coutos-Thevenot P, Delrot S (2003) Expression of a putative grapevine hexose transporter in tobacco alters morphogenesis and assimilate partitioning. J Exp Bot 54:1193–1204PubMedCrossRefGoogle Scholar
  130. Levadoux L (1946) Study of the flower and sexuality in grapes (in French). Ann Ecol Nat Agri Montpellier NS 27:1–89Google Scholar
  131. Levadoux L (1956) Les populations sauvages et cultivees de Vitis vinifera L. Annales de l’amelioration des plantes 6:59–118Google Scholar
  132. Lider LA (1954) Inheritance of resistance to a root-knot nematode (Meloidogyne incognita var. acrita Chitwood) in Vitis spp. Proc Helminthol Soc Wash 21:53–60Google Scholar
  133. Lijavetzky D, Ruiz-García L, Cabezas J, Andrés M, Bravo G, Ibáñez A, Carreño J, Cabello F, Ibáñez J, Martínez-Zapater J (2006) Molecular genetics of berry colour variation in table grape. Mol Genet Genomics 276:427–435PubMedCrossRefGoogle Scholar
  134. Lin H, Walker MA (1998) Identifying grape rootstocks with simple sequence repeat (SSR) DNA markers. Am J Enol Vitic 49:403–407Google Scholar
  135. Lodhi MA, Daly MJ, Ye GN, Weeden NF, Reisch BI (1995) A Molecular Marker Based Linkage Map of Vitis. Genome 38:786–794PubMedGoogle Scholar
  136. Lodhi MA, Reisch BI (1995) Nuclear-DNA Content of Vitis Species, Cultivars, Anti Other Genera of the Vitaceae. Theor Appl Genet 90:11–16CrossRefGoogle Scholar
  137. Loomis NH (1948) A note on the inheritance of flower type in muscadine grapes. Proc Am Soc Hortic Sci 52:276–278Google Scholar
  138. Loomis NH, Williams CF (1957) A new genetic flower type of the muscadine grape. J Hered 48:294–304Google Scholar
  139. Loomis NH, Williams CF, Murphy MM (1954) Inheritance of flower types in muscadine grapes. Proc Am Soc Hortic Sci 64:279–283Google Scholar
  140. Lopes MS, dos Santos MR, Dias JEE, Mendonca D, da Camara Machado A (2006) Discrimination of Portuguese grapevines based on microsatellite markers. J Biotechnol 127:34–44PubMedCrossRefGoogle Scholar
  141. Lopes MS, Sefc KM, Eiras Dias E, Steinkellner H, da Camara Machado LM, da Camara Machado A (1999) The use of microsatellites for germplasm management in a Portuguese germplasm grapevine collection. Theor Appl Genet 99:733–739CrossRefGoogle Scholar
  142. Lowe KM, Walker MA (2006) Genetic linkage map of the interspecific grape rootstock cross Ramsey (Vitis champinii) × Riparia Gloire (Vitis riparia). Theor Appl Genet 112:1582–1592PubMedCrossRefGoogle Scholar
  143. Madero E, Boubals D, Truel P (1986) Transmission hereditaire des principaux caracters des cepages Cabernet Franc, Cabernet Sauvignon et Merlot (V. vinifera L.). Vigne Vini 13, Suppl 12:209–219Google Scholar
  144. Maletic E, Pejic I, Kontic JK, Piljac J, Dangl GS, Vokurka A, Lacombe T, Mirosevic N, Meredith CP (2004) Zinfandel, Dobricic, and Plavac mali: The genetic relationship among three cultivars of the Dalmatian Coast of Croatia. Am J Enol Vitic 55:174–180Google Scholar
  145. Mandl K, Santiago JL, Hack R, Fardossi A, Regner F (2006) A genetic map of Welschriesling × Sirius for the identification of magnesium-deficiency by QTL analysis. Euphytica 149:133–144CrossRefGoogle Scholar
  146. Martin JP, Borrego J, Cabello F, Ortiz JM (2003) Characterization of Spanish grapevine cultivar diversity using sequence-tagged microsatellite markers. Genome 46:10–18PubMedCrossRefGoogle Scholar
  147. McGovern PE (2003) Ancient wine: the search for the origins of viticulture. Princeton University Press, PrincetonGoogle Scholar
  148. McGovern PE, Michel RH (1995) The analytical and archaeological challenge of detecting ancient wine: two case studies from the ancient Near East. In: McGovern PE, Fleming SJ, Katz SH (eds) The origins and ancient history of wine. Gordon and Breach, Amsterdam, pp 57–67Google Scholar
  149. McGrew JR (1976) Screening grape seedlings for black rot resistance. Fruit Varieties J 30:31–32Google Scholar
  150. McLeRoy SS, Renfro Jr. RE (2004) Grape Man of Texas. Eaking Press, Austin, TXGoogle Scholar
  151. Merdinoglu D, Butterlin G, Bevilacqua L, Chiquet V, Adam-Blondon A-F, Decroocq S (2005) Development and characterization of a large set of microsatellite markers in grapevine (Vitis vinifera L.) suitable for multiplex PCR. Mol Breed 15:349–366CrossRefGoogle Scholar
  152. Meredith CP, Bowers JE, Riaz S, Handley V, Bandman EB, Dangl GS (1999) The identity and parentage of the variety known in California as Petite Syrah. Am J Enol Vitic 50:236–242Google Scholar
  153. Meredith CP, Lider LA, Raski DJ, Ferrari NL (1982) Inheritance of Tolerance to Xiphinema-Index in Vitis Species. Am J Enol Vitic 33:154–158Google Scholar
  154. Moore JJ (1970) Cytokinin-induced sex conversion in male clones of Vitis species. J Am Soc Hortic Sci 95:387–393Google Scholar
  155. Moore MO (1987) A study of selected taxa of Vitis (Vitaceae) in the southeastern United States. Rhodora 89:75–91Google Scholar
  156. Moore MO (unpubl. manuscript) Vitaceae. In: Flora of North America editorial committee (eds) Flora of North America North of Mexico. Cambridge, New YorkGoogle Scholar
  157. Mortenson JA (1968) The inheritance of resistance to Pierce’s disease in Vitis. J Am Soc Hortic Sci 92:331–337Google Scholar
  158. Mortenson JA (1977) Segregation for resistance to black rot in selfed grape seedlings. Fruit Varieties Journal 31:59–60Google Scholar
  159. Mortenson JA (1981) Sources and inheritance of resistance to anthracnose in Vitis. J Hered 72:423–426Google Scholar
  160. Moser C, Segala C, Fontana P, Salakhudtinov I, Gatto P, Pindo M, Zyprian E, Toepfer R, Grando MS, Velasco R (2005) Comparative analysis of expressed sequence tags from different organs of Vitis vinifera L. Funct Integr Genomics 5:208–217PubMedCrossRefGoogle Scholar
  161. Mullins MG, Srinivasan C (1976) Somatic embryos and plantlets from an ancient clone of the grapevine (cultivar Cabernet Sauvignon) by apomixis in vitro. J Exp Bot 27:1022–1030CrossRefGoogle Scholar
  162. Munson T (1909) Foundations of American Grape Culture. T.V. Munson & Son, Denison, TexasGoogle Scholar
  163. Nebel BR, Ruttle ML (1936) Storage experiments with pollen of cultivated fruit trees. J Pomol Hort Sci 14:347–359Google Scholar
  164. Negi SS, Olmo HP (1966) Sex conversion in a male Vitis vinifera L. by a kinen. Science 152:1624–1625PubMedCrossRefGoogle Scholar
  165. Negi SS, Olmo HP (1970) Studies on sex conversion in male Vitis vinifera L. (sylevstris). Vitis 9:89–96Google Scholar
  166. Negrul AM (1938) Evolucija kuljturnyx from vinograda. Dokl Akad Nauk SSSR 8:585–588Google Scholar
  167. Nesbitt WB (1962) Polyploidy and interspecific hybridzation of Vitis. Department of Horticulture. North Carolina State University, Raleigh, NCGoogle Scholar
  168. Notsuka K, Tsuru T, Shiraishi M (2000) Induced polyploid grapes via in vitro chromosome doubling. J Jpn Soc Hortic Sci 69:543–551CrossRefGoogle Scholar
  169. Nunan KJ, Davies C, Robinson SP, Fincher GB (2001) Expression patterns of cell wall-modifying enzymes during grape berry development. Planta 214:257–264PubMedCrossRefGoogle Scholar
  170. Okie WR (1997) Register of new fruit and nut varieties: Brooks and Olmo list 38. HortScience 32:785–805Google Scholar
  171. Olmo HP (1942a) Breeding of new tetraploid grape varieties. Proc Am Soc Hortic Sci 41:219–224Google Scholar
  172. Olmo HP (1942b) Storage of grape pollen. Proc Am Soc Hortic Sci 41:219–224Google Scholar
  173. Olmo HP (1952) Breeding tetraploid grapes. Proc Am Soc Hortic Sci 59:285–290Google Scholar
  174. Olmo HP (1971) Vinifera rotundifolia hybrids as wine grapes. Am J Enol Vitic 22:87–91Google Scholar
  175. Olmo HP (1986) The potential role of (vinifera × rotundifolia) hybrids in grape variety improvement. Experientia 42:921–926CrossRefGoogle Scholar
  176. Olmo HP (1995) The origin and domestication of the Vinifera grape. In: McGovern PE (ed) The origins and ancient history of wine. Gordon and Breach, Amsterdam, pp 31–43Google Scholar
  177. Or E, Vilozny I, Fennell A, Eyal Y, Ogrodovitch A (2002) Dormancy in grape buds: isolation and characterization of catalase cDNA and analysis of its expression following chemical induction of bud dormancy release. Plant Sci 162:121–130CrossRefGoogle Scholar
  178. Ourecky DK, Pratt C, Einset J (1967) Fruiting behavior of large-berried and large-clustered sports of grapes. Proc Am Soc Hortic Sci 91:217–223Google Scholar
  179. Pacey-Miller T, Scott K, Ablett E, Tingey S, Ching A, Henry R (2003) Genes associated with the end of dormancy in grapes. Funct Integr Genomics 3:144–152PubMedCrossRefGoogle Scholar
  180. Parfitt DE, Almehdi AA (1983) Cryogenic storage of grape pollen. Am J Enol Vitic 34:227–228Google Scholar
  181. Paul HW (1996) Science, vine, and wine in modern France. Cambridge University Press, CambrdigeGoogle Scholar
  182. Pauquet J, Bouquet A, This P, Adam-Blondon AF (2001) Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theor Appl Genet 103:1201–1210CrossRefGoogle Scholar
  183. Pearson RC, Goheen AC (1988) Compendium of grape diseases. APS Press, St. Paul, MNGoogle Scholar
  184. Perl A, Colova-Tsolova V, Eshdat Y (2004) Agrobacterium-mediated transformation of grape embryogenic calli. In: Curtis IS (ed) Transgenic crops of the world: Essential protocols. Kluwer Academic Publishers, pp 229–242Google Scholar
  185. Perl A, Eshdat Y (1998) DNA transfer and gene expression in transgenic grapes. Biotechnol Genet Eng Rev 15:365–386Google Scholar
  186. Perl A, Saad S, Sahar N, Holland D (1995) Establishment of long-term embryogenic cultures of seedless Vitis vinifera cultivars – a synergistic effect of auxins and the role of abscisic acid. Plant Sci 104:193–200CrossRefGoogle Scholar
  187. Perrin M, Gertz C, Masson JE (2004) High efficiency initiation of regenerable embryogenic callus from anther filaments of 19-grapevine genotypes grown worldwide. Plant Sci 167:1343–1349CrossRefGoogle Scholar
  188. Perrin M, Martin D, Joly D, Demangeat G, This P, Masson JE (2001) Medium-dependent response of grapevine somatic embryogenic cells. Plant Sci 161:107–116CrossRefGoogle Scholar
  189. Picaud S, Becq F, Dedaldechamp F, Ageorges A, Delrot S (2003) Cloning and expression of two plasma membrane aquaporins expressed during the ripening of grape berry. Funct Plant Biol 30:621–630CrossRefGoogle Scholar
  190. Pollefeys P, Bousquet J (2003) Molecular genetic diversity of the French-American grapevine hybrids cultivated in North America. Genome 46:1037–1048PubMedCrossRefGoogle Scholar
  191. Pouget R (1980) Breeding grapevine rootstocks for resistance to iron chlorosis. Proceedings of the 3rd International Symposium on Grape Breeding, Davis, University of California, California, pp 191–197Google Scholar
  192. Pratt C (1971) Reproductive Anatomy in Cultivated Grapes – Review. Am J Enol Vitic 22:92–109Google Scholar
  193. Rajasekaran K, Mullins MG (1979) Embryos and plantlets from cultured anthers of hybrid grapevines. J Exp Bot 30:399–407CrossRefGoogle Scholar
  194. Ramming DW (1990) The use of embryo culture in fruit breeding. Hortscience 25:393–398Google Scholar
  195. Ramming DW, Emershad RL, Spiegel-Roy P, Sahar N, Baron I (1990) Embryo culture of early ripening seeded grape (Vitis vinifera) genotypes. Hortscience 25:339–342Google Scholar
  196. Ramming DW, Emershad RL, Tarailo R (2000) A stenospermocarpic, seedless Vitis vinifera × Vitis rotundifolia hybrid developed by embryo rescue. Hortscience 35:732–734Google Scholar
  197. Regner F, Stadlbauer A, Eisenheld C, Kaserer H (2000) Genetic relationships among Pinots and related cultivars. Am J Enol Vitic 51:7–14Google Scholar
  198. Reimer FC, Detjen LR (1910) Self-sterility of the scuppernong and other muscadine grapes. N C Agric Exp Sta Bull, 209:1–23Google Scholar
  199. Reimer FC, Detjen LR (1914) Breeding rotundifolia grapes: a study of transmission of character. North Carolina Agricultural Experiment Station Technical Bulletin, 10:1–47Google Scholar
  200. Reisch BI, Pratt C (1996) Grapes. In: Janick J, Moore JN (eds) Fruit breeding, vol. II: Vine and small fruits. John Wiley & Sons, Inc, NewYorkGoogle Scholar
  201. Reynolds AG, Fuleki T, Evans WD (1982) Inheritance of methyl anthranilate and total volatile esters in Vitis spp. Am J Enol Vitic 33:14–19Google Scholar
  202. Riaz S, Dangl GS, Edwards KJ, Meredith CP (2004) A microsatellite marker based framework linkage map of Vitis vinifera L. Theor Appl Genet 108:864–872PubMedCrossRefGoogle Scholar
  203. Riaz S, Garrison KE, Dangl GS, Boursiquot J-M, Meredith CP (2002) Genetic divergence and chimerism within ancient asexually propagated winegrape cultivars. J Am Soc Hortic Sci 127:508–514Google Scholar
  204. Riaz S, Krivanek AF, Xu K, Walker MA (2006) Refined mapping of the Pierce’s disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris × V. arizonica. Theor Appl Genet 113:1317–1329PubMedCrossRefGoogle Scholar
  205. Rossoni M, Labra M, Imazio S, Grassi F, Scienza A, Sala F (2003) Genetic relationships among grapevine cultivars grown in Oltrepo Pavese (Italy). Vitis 42:31–34Google Scholar
  206. Sauer W, Antcliff AJ (1969) Polyploid mutants of grapes. Hortscience 4:226–227Google Scholar
  207. Schneider W, Staudt G (1979) Estimation of broad sense heritability of some characters of Vitis vinifera (in German with English summary). Vitis 18:238–243Google Scholar
  208. Scott KD, Ablett EM, Lee LS, Henry RJ (2000a) AFLP markers distinguishing an early mutant of Flame Seedless grape. Euphytica 113:245–249CrossRefGoogle Scholar
  209. Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000b) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726CrossRefGoogle Scholar
  210. Sefc KM, Lopes MS, Lefort F, Botta R, Roubelakis-Angelakis KA, Ibáñez J, Pejif I, Wagner HW, Glössl J, Steinkellner H (2000) Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor Appl Genet 100:498–505CrossRefGoogle Scholar
  211. Sefc KM, Regner F, Turetschek E, Glossl J, Steinkellner H (1999) Identification of microsatellite sequences in Vitis riparia and their adaptability for genotyping of different Vitis species. Genome 42:367–373PubMedCrossRefGoogle Scholar
  212. Shirasi S-I, Watanabe Y, Okubo H, Uemoto S (1986) Anthocyanin pigments of black-purple grapes related to variety ‘Kyoho’ (Vitis vinifera L. × V. labrusca L.). J Jpn Soc Hortic Sci 55:123–129Google Scholar
  213. Siret R, Boursiquot J-M, Merle MH, Cabanis JC, This P (2000) Toward the authentication of varietal wines by the analysis of grape (Vitis vinifera L.) residual DNA in must and wine using microsatellite markers. J Agric Food Chem 48:5035–5040PubMedCrossRefGoogle Scholar
  214. Snyder E, Harmon FN (1939) Grape progenies of self-pollinated vinifera varieties. Proc Am Soc Hortic Sci 37:625–626Google Scholar
  215. Snyder E, Harmon FN (1952) Grape Breeding Summary 1923–1951. Proc Am Soc Hortic Sci 60:243–246Google Scholar
  216. Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene synthesis in grape (Vitis vinifera L.). Plant Mol Biol 24:743–755PubMedCrossRefGoogle Scholar
  217. Spiegel-Roy P, Sahar N, Baron J, Lavi U (1985) In vitro culture and plant formation from grape cultivars with abortive ovules and seeds. J Am Soc Hortic Sci 110:109–112Google Scholar
  218. Sreekantan L, Thomas MR (2006) VvFT and VvMADS8, the grapevine homologues of the floral integrators FT and SOC1, have unique expression patterns in grapevine and hasten flowering in Arabidopsis. Funct Plant Biol 33:1129–1139CrossRefGoogle Scholar
  219. Sreekantan L, Torregrosa L, Fernandez L, Thomas MR (2006) VvMADS9, a class B MADS-box gene involved in grapevine flowering, shows different expression patterns in mutants with abnormal petal and stamen structures. Funct Plant Biol 33:877–886CrossRefGoogle Scholar
  220. Srinivasan C, Mullins MG (1981) Induction of precocious flowering in grapevine seedlings by growth regulators. Agronomie 1:1–5CrossRefGoogle Scholar
  221. Stover LH (1960) Progress in the development of grape varieties for Florida. Proc Fla State Hort Soc 73:320–323Google Scholar
  222. Symons GM, Davies C, Shavrukov Y, Dry IB, Reid JB, Thomas MR (2005) Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol 140:150–158PubMedCrossRefGoogle Scholar
  223. Szegedi E, Korbuly J, Koleda I (1984) Crown gall resistance in East-Asian Vitis species and in their V. vinifera hybrids. Vitis 23:21–26Google Scholar
  224. Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, Couture C, Ageorges A, Atanassova R, Leon C, Renaudin JP, Dedaldechamp F, Romieu C, Delrot S, Hamdi S (2005) Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta 222:832–847PubMedCrossRefGoogle Scholar
  225. The French-Italian Public Consortion for Grapevine Genome Characterization. (2007). The Grapevine Genome Sequence Suggests Ancestral Hexaplodization in Major Angiosperm Phyla. Nature 449: 463–467.CrossRefGoogle Scholar
  226. This P, Jung A, Boccacci P, Borrego J, Botta R, Costantini L, Crespan M, Dangl G, Eisenheld C, Ferreira-Monteiro F, Grando S, Ibáñez J, Lacombe T, Laucou V, Magalhães R, Meredith C, Milani N, Peterlunger E, Regner F, Zulini L, Maul E (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 109:1448–1458PubMedCrossRefGoogle Scholar
  227. This P, Lacombe T, Cadle-Davidson M, Owens CL (2007) Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1. Theor Appl Genet 114:723–730PubMedCrossRefGoogle Scholar
  228. This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22:511–519PubMedCrossRefGoogle Scholar
  229. Thomas MR, Cain P, Scott NS (1994) DNA Typing of Grapevines – a Universal Methodology and Database for Describing Cultivars and Evaluating Genetic Relatedness. Plant Mol Biol 25:939–949PubMedCrossRefGoogle Scholar
  230. Thomas MR, Matsumoto S, Cain P, Scott NS (1993) Repetitive DNA of grapevine: classes present and sequences suitable for cultivar identification. Theor Appl Genet 86:173–180Google Scholar
  231. Thomas MR, Scott NS (1993) Microsatellite Repeats in Grapevine Reveal DNA Polymorphisms When Analyzed as Sequence-Tagged Sites (STSs). Theor Appl Genet 86:985–990Google Scholar
  232. Thompson MM, Olmo HP (1963) Cytohistological studies of cytochimeric and tetraploid grapes. Am J Bot 50:901–906CrossRefGoogle Scholar
  233. Torregrosa L (1998) A simple and efficient method to obtain stable embryogenic cultures from anthers of Vitis vinifera L. Vitis 37:91–92Google Scholar
  234. Vidal JR, Kikkert JR, Malnoy MA, Wallace PG, Barnard J, Reisch BI (2006) Evaluation of transgenic ‘Chardonnay’ (Vitis vinifera) containing magainin genes for resistance to crown gall and powdery mildew. Transgenic Res 15:69–82PubMedCrossRefGoogle Scholar
  235. Vidal JR, Kikkert JR, Wallace PG, Reisch BI (2003) High-efficiency biolistic co-transformation and regeneration of ‘Chardonnay’ (Vitis vinifera L.) containing npt-II and antimicrobial peptide genes. Plant Cell Rep 22:252–260PubMedCrossRefGoogle Scholar
  236. Vignault C, Vachaud M, Cakir B, Glissant D, Dédaldéchamp F, Büttner M, Atanassova R, Fleurat-Lessard P, Lemoine R, Delrot S (2005) VvHT1 encodes a monosaccharide transporter expressed in the conducting complex of the grape berry phloem. J Exp Bot 56:1409–1418PubMedCrossRefGoogle Scholar
  237. Vigne E, Komar V, Fuchs M (2004) Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus. Transgenic Res 13:165–179PubMedCrossRefGoogle Scholar
  238. Vouillamoz JF, Grando MS (2006) Genealogy of wine grape cultivars: ‘Pinot’ is related to ‘Syrah’. Heredity 97:102–110PubMedCrossRefGoogle Scholar
  239. Wagner R (1967) Etude de quelques disjonctions dans des descendances de Chasselas, Muscat Ottonel et Muscat a petits grains. Vitis 6:353–363Google Scholar
  240. Wake CMF, Fennell A (2000) Morphological, physiological and dormancy responses of three Vitis genotypes to short photoperiod. Physiol Plant 109:203–210CrossRefGoogle Scholar
  241. Walker AR, Lee E, Robinson SP (2006) Two new grape cultivars, bud sports of Cabernet Sauvignon bearing pale-coloured berries, are the result of deletion of two regulatory genes of the berry colour locus. Plant Mol Biol 62:623–635PubMedCrossRefGoogle Scholar
  242. Walker MA, Meredith CP (1990) The genetics of resistance to grapevine fanleaf virus in Vitis vinifera. In: Alleweldt G (ed) Proceeding of the 5th International Symposium on Grape Breeding. St. Martin, Pfalz, Germany, Vitis special Issue, pp 228–238Google Scholar
  243. Walker MA, Meredith CP, Goheen AC (1985) Sources of resistance to grapevine fanleaf virus (GFV) in Vitis species. Vitis 24:218–228Google Scholar
  244. Wang Q, Mawassi M, Sahar N, Li P, Violeta C-T, Gafny R, Sela I, Tanne E, Perl A (2004) Cryopreservation of Grapevine (Vitis spp.) Embryogenic Cell Suspensions by Encapsulation & Vitrification. Plant Cell, Tissue and Organ Cult 77:267–275CrossRefGoogle Scholar
  245. Wellington R (1939) The Ontario grape and its seedlings as parents. Proc Am Soc Hortic Sci 37:630–634Google Scholar
  246. Williams CF (1954) Breeding perfect-flowered muscadine grapes. Proc Am Soc Hortic Sci 64:274–278Google Scholar
  247. Xiao H, Siddiqua M, Braybrook S, Nassuth A (2006) Three grape CBF/DREB1 genes respond to low-temperature, drought and abscisic acid. Plant, Cell and Environ 29:1410–1421CrossRefGoogle Scholar
  248. Xue B, Ling KS, Reid CL, Krastanova S, Sekiya M, Momol EA, Sule S, Mozsar J, Gonsalves D, Burr TJ (1999) Transformation of five grape rootstocks with plant virus genes and a virE2 gene from Agrobacterium tumefaciens. In Vitro Cell Dev Biol Plant 35:226–231CrossRefGoogle Scholar
  249. Yakushiji H, Kobayashi S, Goto-Yamamoto N, Tae Jeong S, Sueta T, Mitani N, Azuma A (2006) A skin-color mutation of grapevine, from black-skinned Pinot Noir to white-skinned Pinot Blanc, is caused by deletion of the functional VvmybA1 allele. Biosci Biotechnol Biochem 70:1506–1508PubMedCrossRefGoogle Scholar
  250. Yamamoto T, Iketani H, Ieki H, Nishizawa Y, Notsuka K, Hibi T, Hayashi T, Matsuta N (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep V19:639–646CrossRefGoogle Scholar
  251. Ye GN, Soylemezoglu G, Weeden NF, Lamboy WF, Pool RM, Reisch BI (1998) Analysis of the relationship between grapevine cultivars, sports and clones via DNA fingerprinting. Vitis 37:33–38Google Scholar
  252. Zhiduan C, Wen J (draft manuscript) Vitaceae. In: Committee FoCE (ed) Flora of China, vol. 12 (Hippocastanaceae through Pentaphylaceae). Science Press, Beijing, and Missouri Botanical Garden Press, St. LouisGoogle Scholar
  253. Zohary D (1996) In: Harris DR (ed) The Origins and Spread of Agriculture and Pastoralism in Eurasia. University College London Press, London, pp 142–147Google Scholar
  254. Zohary D, Hopf M (2000) Domestication of Plants in the Old World, 3rd edn. Oxford University Press, LondonGoogle Scholar
  255. Zohary D, Spiegel-Roy P (1975) Beginnings of fruit growing in the old world. Science 187:319–327PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • C.L. Owens
    • 1
  1. 1.USDA-ARS, Grape Genetics Research Unit, Cornell UniversityGenevaUSA

Personalised recommendations