Skip to main content

Apples

  • Chapter

Abstract

The overall objectives of modern apple breeding programs are to increase the marketability of fruit and reduce production costs. Developing well adapted cultivars with resistance to major pests is also a focus of all breeding programs. The apple is generally grown as a composite tree with a rootstock and a fruiting scion, making rootstock breeding as important as the development of scion cultivars. Genetic resistance has been found for a number of the major pests of apple. Engineering resistance to apple scab and fire blight has been the focus of many of laboratories. Most of the traits associated with adaptation and productivity have been shown to be quantitatively controlled, including chilling requirement, cold hardiness, plant vigor, season of flowering and duration of the juvenile period. Many of the traits associated with fruit quality are also quantitatively inherited including flavor, skin color, shape, size and texture. Several cDNA libraries have been developed to identify genes associated with pollination and apple fruit development. A number of apple linkage maps have been published using several different sets of parents and molecular markers have been linked to a number of monogenic traits. Mining of existing apple EST information promises to expand our knowledge of many genes important in the genetic improvement of apple.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldwinckle HS, Borejsza-Wysocka EE, Malnoy M, Brown SK, Norelli JL, Beer SV, Meng X, He SY, Jin Q-L (2003) Development of fire blight resistant apple cultivars by genetic engineering. Acta Hort 622:105–111

    CAS  Google Scholar 

  • Aldwinckle H, Lamb R, Gustafson H (1977) Nature and inheritance of resistance to Gymnosporangium juniperi-virginianae in apple cultivars. Phytopath 67:259–266

    Google Scholar 

  • Alston FH (1970) Resistance to collar not, Phytophthora cactorum (Leb. and Cohn) Schroet in apple. Rep E Malling Research sta. 1969, 143–145

    Google Scholar 

  • Alston FH (1976) Dwarfing and lethal genes in apple progenies. Euphytica 25:505–514

    Google Scholar 

  • Alston FH (1977) Practical aspects of breeding for mildew (Podosphaera leucotricha) resistance in apples. Proc Eucarpia Symp Tree Fruit Breed 4–13

    Google Scholar 

  • Alston FH (1981) Breeding high quality high yielding apples. In: Goodenough P, Atkin R (eds) Quality in stored and processed vegetables and fruit. Academic Press, New York, pp 93–102

    Google Scholar 

  • Alston FH, Briggs JB (1970) Inheritance of hypersensitivity to rosy apple aphid Dysaphis plantaginea in apple. Can J Genet Cytol 12:257–258

    Google Scholar 

  • Alston FH, Briggs JB (1977) Resistance genes in apple and biotypes of Dysaphis devecta. Ann Applied Biol 87:75–81

    Google Scholar 

  • Alston FH, Phillips K, Evans K (2000) A Malus gene list. Acta Hort 538:561–570

    CAS  Google Scholar 

  • Alston FH, Watkins R (1973) Apple breeding at East Malling. Proc Eucarpia Fruit Breed Symp 14–29

    Google Scholar 

  • Antofie A, Lateur M, Oger R, Patocchi A, Durel CE, Van de Weg WE (2007) A new versatile database created for geneticists and breeders to link molecular and phenotypic data in perennial crops: the AppleBreed Database. Bioinformatics 23:882–891

    PubMed  CAS  Google Scholar 

  • Atkinson CJ, Nestby R, Ford YY, Dodds PAA (2005) Enhancing beneficial antioxidants in fruits: a plant physiological perspective. Biofactors 23:229–234

    PubMed  CAS  Google Scholar 

  • Atkinson RG, Bolitho KM, Wright MA, Iturriagagoitia-Bueno T, Reid SJ, Ross GS (1998) Apple ACC-oxidase and polygalacturonase: ripening-specific gene expression and promoter analysis in transgenic tomato. Plant Mol Biol 38:449–460

    PubMed  CAS  Google Scholar 

  • Atkinson RG, Schröder R, Hallett IC, Cohen D, MacRae E (2002) Overexpression of polygalacturonase in transgenic apple trees leads to a range of novel phenotypes involving changes in cell adhesion. Plant Physiol 129:122–133

    PubMed  CAS  Google Scholar 

  • Baldi P, Patocchi A, Zini E, Toller C, Velasco R, Komjanc M (2004) Cloning and linkage mapping of resistance gene homologues in apple. Theor Appl Genet 109:231–239

    PubMed  CAS  Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer B, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci USA101:886–890

    PubMed  CAS  Google Scholar 

  • Beuning L, Bowen J, Persson H, Barraclough D, Bulley S, MacRae E (2004) Characterisation of Mal d 1-related genes in Malus. Plant Mol Biol 55:369–388

    PubMed  CAS  Google Scholar 

  • Bolar JP, Norelli JL, Harman GE, Brown SK, Aldwinckle HS (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Res 10:533–543

    PubMed  CAS  Google Scholar 

  • Bolar JP, Norelli JL, Wong K-W, Hayes CK, Harman GE, Aldwinckle HS (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopath 90:72–77

    CAS  Google Scholar 

  • Boss P, Gardner R, Janssen B, Ross G (1995) An apple polyphenol oxidase cDNA is up-regulated in wounded tissues. Plant Mol Biol 27:429–433

    PubMed  CAS  Google Scholar 

  • Boudichevskaia A, Flachowsky H, Peil A, Fischer C, Dunemann F (2006) Development of a multiallelic SCAR marker for the scab resistance gene Vr1/ Vh4/Vx from R12740-7A and is utility for molecular breeding. Tree Genet Genomes 2:186–195

    Google Scholar 

  • Brooks HJ, Vest G (1985) Public programs on genetics and breeding of horticultural crops in the United States. HortScience 20:826–830

    Google Scholar 

  • Broothaerts W (2003) New findings in apple-S genotype analysis resolve previous confusion and request the re-numbering of some S-alleles. Theor Appl Genet 106:703–714

    PubMed  CAS  Google Scholar 

  • Broothaerts W, De Clubber K, Zaman S, Coppens S, Keulemans J (2000a) The feasibilty of fungal disease resistance in apple by expression of antimicrobial peptide genes. Acta Hortic521:91–94

    CAS  Google Scholar 

  • Broothaerts W, Keulemans J, van Nerum I (2004a) Self-fertile apple resulting from S-RNase gene silencing. Plant Cell Rep 22:497–501

    CAS  Google Scholar 

  • Broothaerts W, McPherson J, Li BC, Randall E, Lane WD, Wiersma PA (2000b) Fast apple (Malus × domestica) and tobacco (Nictotiana tobacum) leaf polyphenol oxidase activity assay for screening transgenic plants. J Agric Food Chem 48:5924–5928

    CAS  Google Scholar 

  • Broothaerts W, van Nerum I, Keulemans J (2004b) Update and review of incompatibility (S-) genotypes of apple cultivars. HortScience 39:943–947

    CAS  Google Scholar 

  • Brown SK (1992) Genetics of apple. Plant Breed Rev 9:333–365

    Google Scholar 

  • Brown AG, Harvey DM (1971) The nature and inheritance of sweetness and acidity in the cultivated apple. Euphytica 20:68–80

    CAS  Google Scholar 

  • Brown SK, Maloney KE (2003) Genetic improvement of apple: breeding, markers, mapping and biotechnology. In: Ferree D, Warrington I (eds) Apples: botany, production and uses. CAB International, Wallingford, UK, pp 31–59

    Google Scholar 

  • Bulley SM, Wilson FM, Hedden P, Phillips AL, Croker SJ, James DJ (2005) Modification of gibberellin biosynthesis in the grafted apple scion allows control of tree height independent of the rootstock. Plant Biotech J 3:215–223

    CAS  Google Scholar 

  • Bus VG, Alspach PA, Hofstee ME, Brewer LR (2002) Genetic variability and preliminary heritability estimates of resistance to scab (Venturia inaequalis) in an apple genetics population. NZ J Crop Hort Sci 30:83–92

    Google Scholar 

  • Bus VGM, Lauren FND, van de Weg WE, Rusholme RL, Rikkerink EHA, Gardiner SE, Basset HCM, Kodde LP, Plummer KM (2005a) The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740-7A. New Phytologist 166:1035–1049

    CAS  Google Scholar 

  • Bus VGM, Rikkerink EHA, van de Weg WE, Rusholme RL, Gardiner SE, Basset HCM, Kodde LP, Parisi L, Laurens FND, Meulenbroek EJ, Plummer KM (2005b) The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian Seedling R12740-7A map to the same linkage group of apple. Mol Breed 15:103–116

    CAS  Google Scholar 

  • Caffier V, Parisi L (2007) Development of powdery mildew on sources of resistance to Podosphaera leucotricha, exposed to an inoculum virulent against the major resistance gene Pl-2. Plant Breeding 126:319–322

    CAS  Google Scholar 

  • Calenge F, Van der Linden CG, Van der Weg E, Schouten HJ, Van Arkel G, Denancé C, Durel CE (2005) Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor Appl Genet 110:660–668

    PubMed  CAS  Google Scholar 

  • Carnes J, Ferrer A, Fernandez-Caldas E (2006) Allergenicity of 10 different apple varieties. Ann Allergy Asthma Immunol 96:564–570

    PubMed  CAS  Google Scholar 

  • Castiglione S, Pirola B, Sala F, Ventura M, Pancaldi M, Sansavini S (1998) Molecular studies of ACC synthase and ACC oxidase genes in apple. Acta Hortic 484:305–309

    CAS  Google Scholar 

  • Cevik V, King GJ (2000) Molecular genetic analysis of the Sd1 aphid resistance locus in Malus. Acta Hortic 538:553–559

    CAS  Google Scholar 

  • Challice JS (1974) Rosaceae chemotaxonomy and the origins of the Pomoideae. Bot J Linn Soc 69:239–259

    Google Scholar 

  • Challice JS, Kovanda M (1981) Chemotaxonomic studies in the family Rosaceae and the evolutionary origins of the subfamily Maloideae. Preslia 53:289–304

    Google Scholar 

  • Chen H, Korban SS (1987) Genetic variability and the inheritance of resistance to cedar-apple rust in apple. Plant Path 36:168–174

    Google Scholar 

  • Cheng FS, Weeden NF, Brown SK (1996) Identification of co-dominant RAPD markers tightly linked to fruit skin color in apple. Theor Appl Genet 93:222–227

    CAS  Google Scholar 

  • Cheng FS, Weeden NF, Brown SK, Aldwinckle HS, Gardiner SE, Bus VG (1998) Development of a DNA marker for Vm, a gene conferring resistance to apple scab. Genome 41:208–214

    CAS  Google Scholar 

  • Chevreau E, Lespinasse Y, Gallet M (1985) Inheritance of pollen enzymes and polyploid origin of apple (Malus domestica Borkh.). Theor Appl Genet 71:268–277

    CAS  Google Scholar 

  • Chevreau E, Dupuis F, Ortolan C, Parisi L (2001) Transformation of apple for durable scab resistance: expression of a puroindoline gene in susceptible and resistant (Vf) genotypes. Acta Hortic 560:323–326

    CAS  Google Scholar 

  • Chyi Y, Weeden N (1984) Relative isozyme band intensities permit the identification of the 2n gamete parent of triploid apple cultivars. HortScience 19:818–819

    CAS  Google Scholar 

  • Conner PJ, Brown SK, Weeden NF (1997) Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars. J Am Soc Hortic Sci 122:350–359

    CAS  Google Scholar 

  • Conner PJ, Brown SK, Weeden NF (1998) Molecular-marker analysis of quantitative traits for growth and development in juvenile apple trees. Theor Appl Genet 96:1027–1035

    CAS  Google Scholar 

  • Costa F, Stella S, Van de Weg E, Guerra W, Cecchinel M, Dallavia J, Koller B, Sansavini S (2005) Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh.). Euphytica 141:181–190

    CAS  Google Scholar 

  • Crassweller R, Green G (2003) Production and handling techniques for processing apples. In: Ferree DWI (ed) Apples: botany, production and uses. CAB International, Wallingford, UK, pp 615–633

    Google Scholar 

  • Cummins JN, Forsline PL, Mackenzie JD (1981) Woolly apple aphid colonization on Malus cultivars. J Am Soc Hortic Sci 106:26–30

    Google Scholar 

  • Currie AJ, Ganeshanandam S, Noiton DA, Garrick D, Shelbourne CJ, Oraguzie N (2000) Quantitative evaluation of apple (Malus domestica Borkh.) fruit shape by principal component analysis of Fourier descriptors. Euphytica 111:221–227

    Google Scholar 

  • Crosby JA, Janick J, Pecknold PC, Korban SS, O’Conner PA, Ries SM, Goffreda S, Voordeckers A (1992) Breeding apples for scab resistance:1945–1990. Acta Hortic 317:43–90

    Google Scholar 

  • Dandekar AM, Teo G, Defilippi BG, Uratsu SL, Passey AJ, Kader AA, Stow JR, Colgan RJ, James DJ (2004) Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Res 13:373–384

    CAS  Google Scholar 

  • Davey MW, Kenis K, Keulemans J (2006) Genetic control of fruit vitamin C. Plant Physiol 142:343–351

    PubMed  CAS  Google Scholar 

  • Dayton DF, Williams EB (1968) Independent genes in Malus for resistance to Venturia inaequalis. Proc Am Soc Hortic Sci 92:89–94

    Google Scholar 

  • Decourtye L (1967) A study of some characters under simple genetical control in apple (Malus sp.) and pear (Pyrus communis) (in French). Ann Amel Plantes 17:243–265

    Google Scholar 

  • Decourtye L, Lantin B (1969) Contriution a la connaissance des mutants spurs de pommier heredite du caractere. Ann Amel Plantes 19:227–238

    Google Scholar 

  • Defilippi BG, Dandekar AM, Kader AA (2005a) Relationship of ethylene biosynthesis to volatile production, related enzymes, and precursor availability in apple peel and flesh tissues. J Agric Food Chem 53:3133–3141

    CAS  Google Scholar 

  • Defilippi BG, Kader AA, Dandekar AM (2005b) Apple aroma: alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene. Plant Sci 168:1199–1210

    CAS  Google Scholar 

  • Diaz-Perales A, Garcia-Casado G, Sanchez-Monge R, Garcia-Selles FJ, Barber D, Salcedo G (2002) cDNA cloning and heterologous expression of the major allergens from peach and apple belonging to the lipid-transfer protein family. Clin Exp Allergy 32:87–92

    PubMed  CAS  Google Scholar 

  • Dickson EE, Kresovich S, Weeden NF (1991) Isozymes in North American Malus (Rosaceae): hybridization and species differentiation. Syst Bot 16:363–375

    Google Scholar 

  • Dong, Y-H, Yao J-L, Atkinson RG, Putterill JJ, Morris BA, Gardner RC (2000) MDH1: an apple homeobox gene belonging to the BEL1 family. Plant Mol Biol 42:623–633

    PubMed  CAS  Google Scholar 

  • Dong J, Kim W, Yip W, Thompson GA, Li L, Bennett AB, Yang S (1991) Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylase synthase and expression of its mRNA in ripening apple fruit. Planta 185:38–45

    CAS  Google Scholar 

  • Dong J, Olson D, Silverstone A, Yang S (1992) Sequence of a cDNA coding for a 1-Aminocyclopropane-1-carboxylate oxidase homolog from apple fruit. Plant Physiol 98:1530–1531

    PubMed  CAS  Google Scholar 

  • Dong Y, Beuning L, Davies K, Mitra D, Morris B, Koostra A (1998a) Expression of pigmentation genes and photo-regulation of anthocyanin biosynthesis in developing Royal Gala apple flowers. Aust J Plant Physiol 25:245–252

    CAS  Google Scholar 

  • Dong Y, Janssen BJ, Bieleski LR, Atkinson RG, Morris BA, Gardner RC (1997) Isolating and characterizing genes differentially expressed early in apple fruit development. J Am Soc Hortic Sci 122:752–757

    CAS  Google Scholar 

  • Dong Y, Kvarnheden A, Yao J, Sutherland P, Atkinson R, Morris B, Gardner R (1998b) Identification of pollination-induced genes from the ovary of apple (Malus domestica). Sexual Plant Reprod 11:277–283

    CAS  Google Scholar 

  • Dong Y-H, Yao J-L, Atkinson RG, Morris BA, Gardner RC (1999) Mdh3 encoding a Phalaenopsis O39-like homeodomain protein expressed in ovules of Malus domestica. J Exp Bot 50:141–142

    CAS  Google Scholar 

  • Dong Y-H, Zhan X-C, Kvarnheden A, Atkinson R, Morris B, Gardner R (1998c) Expression of a cDNA from apple encoding a homologue of DAD1, an inhibitor of programmed cell death. Plant Sci 139:165–174

    CAS  Google Scholar 

  • Dunemann F, Bräcker G, Markussen T, Roche P (1999) Identification of molecular markers for the major mildew resistance gene Pl 2 in apple. Acta Hort 484:411–416

    Google Scholar 

  • Durel C, Calenge F, Parisi W, van de Weg W, Kodde L, Liebhard R, Kodde LP, Dunemann F, Gennari F, Thiermann M, Lespinasse Y (2004) An overview of the position and robustness of scab resistance QTLs and major genes by aligning genetic maps of five apple progenies. Acta Hortic 663:135–140

    CAS  Google Scholar 

  • Durel CE, Laurens F, Fouillet A, Lespinasse Y (1998) Utilization of pedigree information to estimate genetic parameters from large unbalanced data sets in apple. Theor Appl Genet 96:1077–1085

    Google Scholar 

  • Durel CE, Lespinasse Y, Calenge F, van der Weg WE, Koller B, Dunemann F, Thiermann M, Evans K, James C, Tartarini S (2002) Four years of the European D.A.R.E. Project: numerous results on apple scab and powdery mildew resistance gene mapping. In: Plant, Animal & Microbe Genomes X Conference, San Diego, California. http://www.intl-pag.org

    Google Scholar 

  • Durel CE, Parisi L, Laurens F, Van de Weg WE, Liebhard R, Jourjon MF (2003) Genetic dissection of partial resistance to race 6 of Venturia inaequalis in apple. Genome 46:224–234

    PubMed  CAS  Google Scholar 

  • Durel CE, Vande Weg WE, Venisse JS, Parioi L (2000) Localization of a major gene for scab resistance on the European genetic map of the Prima × Fiesta cross. 10BC/WPRS Bull.23:245–248

    Google Scholar 

  • Eberhardt MV, Lee CY, Liu RH (2000) Nutrition: antioxidant activity of fresh apples. Nature 405:903–904

    PubMed  CAS  Google Scholar 

  • Erdin N, Tartarini S, Broggini GAL, Gennari F, Sansavini S, Gessler C, Patocchi A (2006) Mapping of the apple scab-resistance gene Vb. Genome 49:1238–1245

    PubMed  CAS  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    PubMed  CAS  Google Scholar 

  • Evans K, James C (2003) Identification of SCAR markers linked to Pl-w mildew resistance in apple. Theor Appl Genet 106:1178–1183

    PubMed  CAS  Google Scholar 

  • FAOSTAT (2004) Food and agricultural organization of the United Nations. http://faostat.fao.org/ site/336.default.asp

    Google Scholar 

  • Fiala JL (1994) Flowering crabapples: The genus Malus. Timer Press, Portland, Oreqon

    Google Scholar 

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus × domestica Borkh.). Plant Breed 126:137–145

    CAS  Google Scholar 

  • Forsline PL (2003) Collection, maintenance, characterization and utilization of wild apples of central Asia. Hortic Rev 29:1–61

    Google Scholar 

  • Forsline P, Dickson E, Djangalieu A (1994) Collection of wild Malus, Vitis and other fruit species genetic resources in Kasakhstan and neighboring republics. HortScience 29:433 (abstract)

    Google Scholar 

  • Gallott JC, Lamb RC, Aldwinckle HS (1985) Resistance to powdery mildew from some small-fruited Malus cultivars. HortScience 20:1085–1087

    Google Scholar 

  • Gao ZS, van de Weg WE (2006) The Vf gene for scab resistance in apple is linked to sub-lethal genes. Euphytica 151:123–132

    CAS  Google Scholar 

  • Gao ZS, van de Weg WE, Schaart JG, Schouten, HJ, Tran DH, Kodde LP, van der Meer, IM, van der Geest AHM, Kodde J, Breiteneder H, Hoffmann-Sommergruber K, Bosch D, Gilissen LJWJ (2005a) Genomic cloning and linkage mapping of the Mal d 1 (PR-10) gene family in apple (Malus domestica). Theor Appl Genet 111:171–183

    CAS  Google Scholar 

  • Gao ZS, van de Weg WE, Schaart JG, van der Meer IM, Kodde LP, Laimier M, Breiteneder H, Hoffmann-Sommergruber K, and Gilissen LJWJ (2005b) Linkage map positions and allelic diversity of two Mal d 3 (non-specific lipid transfer protein) genes in the cultivated apple (Malus domestica). Theo Appl Genet 110:479–491

    CAS  Google Scholar 

  • Gercheva P, Zimmerman RH, Owens LD, Berry C, Hammersclag FA (1994) Particle bombardment of apple leaf explants influences adventitious shoot formation. HortScience 29:1536–1538

    Google Scholar 

  • Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25:473–503

    CAS  Google Scholar 

  • Gianfranceschi L, Seglias N, Tartarini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069–1076

    CAS  Google Scholar 

  • Gilissen LJ, Bolhaar ST, Matos CI, Rouwendal GJ, Boone MJ, Krens FA, Zuidmeer L, van Leeuwen A, Akkerdaas J, Hoffmann-Sommergruber K, Knulst AC, Bosch D, van de Weg E, van Ree R (2005) Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol 115:364–369

    PubMed  CAS  Google Scholar 

  • Gittins JR, Hiles ER, Pellny TK, Biricolti S, James DJ (2001) The Brassica napus extA promoter: a novel alternative promoter to CaMV 35S for directing transgene expression to young stem tissues and load bearing regions of transgenic apple trees (Malus pumila Mill.). Mol Breed 7:51–62

    CAS  Google Scholar 

  • Gittins JR, Pellny TK, Biricolti S, Hiles ER, Passey AJ, James DJ (2003) Transgene expression in the vegetative tissues of apple driven by the vascular-specific rolC and CoYMV. Transgenic Res 12:391–402

    PubMed  CAS  Google Scholar 

  • Gittins JR, Pellny TK, Hiles ER, Rosa C, Biricolti S, James DJ (2000) Transgene expression driven by heterologous ribulose-1,5-bisphosphate carboxylase/oxygenase small-subunit gene promoters in the vegetative tissues of apple (Malus pumila Mill.). Planta 210:232–240

    PubMed  CAS  Google Scholar 

  • Gygax M, Gianfranceschi L, Liebhard R, Kellerhals M, Gessler C, Patocchi A (2004) Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor Appl Genet 109:1702–1709

    PubMed  CAS  Google Scholar 

  • Hammerschlag FA, Liu Q (2000) Generating apple transformants free of Agrobacterium tumefaciens by vacuum infiltrating explants with an acidified medium and with antibiotics. Acta Hort 530:103–111

    Google Scholar 

  • Harada T, Sunako T, Wakasa Y, Soejima J, Satoh T, Nitzeki M (2000) An allele of the 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low level of ethylene production in climacteric fruits of some apple cultivars. Theor Appl Genet 101:742–746

    CAS  Google Scholar 

  • Harker FR, Amos RL, Echeverría G, Gunson FA (2006). Influence of texture on taste: insights gained during studies of hardness, juiciness, and sweetness of apple fruit. J Food Sci 71:S77–S82

    CAS  Google Scholar 

  • Harris SA, Robinson JP, Juniper BE (2002) Genetic clues to the origin of the apple. Trends Genet 18:426–430

    PubMed  CAS  Google Scholar 

  • Hauagge R, Cummins J (1991) Genetics of length of dormancy period in Malus vegetative buds. J Am Soc Hortic Sci 116:121–126

    Google Scholar 

  • Hemmat M, Brown SK, Weeden NF (2002) Tagging and mapping scab resistance genes from R12740-7A apple. J Am Soc Hortic Sci 127:365–370

    CAS  Google Scholar 

  • Hemmat M, Weeden NF, Conner PJ, Brown SK (1997) A DNA marker for columnar growth habit in apple contains a simple sequence repeat. J Am Soc Hortic Sci 122:347–349

    CAS  Google Scholar 

  • Hemmat M, Weeden N, Manganaris A, Lawson D (1994) Molecular marker linkage map for apple. J Hered 85:4–11

    PubMed  CAS  Google Scholar 

  • Hoffmann-Sommergruber S (2002) Pathogenesis-related (PR)-proteins identified as allergens. Biochem Soc Trans 30:930–935

    PubMed  CAS  Google Scholar 

  • Hokanson SC, McFerson JR, Forsline PL, Lamboy WF, Luby J, Djangaliev A, Aldwinckle H (1997) Collecting and managing wild Malus germplasm in its center of diversity. HortScience 32:173–176

    Google Scholar 

  • Holefors A, Xue Z-T, Zhu L-H, Welander M (2000) The Arabidopsis phytochrome B gene influences growth of the apple rootstock M26. Plant Cell Reports 19:1049–1056

    CAS  Google Scholar 

  • Igarashi M, Ogasawara H, Hatsuyama Y, Saito A, Suzuki M (2002) Introduction of rolC into Marubakaidou [Malus prunifolia Borkh. var. Ringo Asami Mo 84-A] apple rootstock via Agrobacterium tumefaciens. Plant Sci 163:463–473

    CAS  Google Scholar 

  • Jacobsen E, Schouten HJ (2007) Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants. Trends Biotech 25:219–223

    CAS  Google Scholar 

  • James CM, Clarke JB, Evans KM (2004) Identification of molecular markers linked to the mildew resistance gene Pl-d in apple. Theor Appl Gen 110:175–181

    CAS  Google Scholar 

  • James DJ, Gittins JR, Massiah AJ, Pellny TK, Hiles ER, Biricolti S, Passey AJ, Vaughn SP (2001) Using heterologous and homologous promoters to study tissue specific transgene expression in fruit crops. Acta Hortic 560:55–62

    CAS  Google Scholar 

  • James DJ, Passey AJ, Barbaro DJ, Bevan MW (1989) Genetic transformation of apple (Malus pumila Mill.) using a disarmed Ti-binary vector. Plant cell Rep 7:658–661

    CAS  Google Scholar 

  • Janick J, Cummins JN, Brown SK, Hemmat M (1996) Apples. In: Janick J, Moore J (eds) Fruit Breeding, vol. I: Tree and Tropical Fruits. John Wiley & Sons, New York, pp 1–77

    Google Scholar 

  • Juniper BE, Watkins R, Harris SA (1999) The origin of the apple. Acta Hortic 484:27–33

    Google Scholar 

  • Jung S, Jesudurai C, Staton M, Du Z, Ficklin S, Cho I, Abbott A, Tomkins J, Main D (2004) GDR (Genome Database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research. BMC Bioinform 5 http://www.biomedcentral.com/1871-2105/5/130

    Google Scholar 

  • Kenis K, Keulemans V (2005) Genetic linkage maps of two apple cultivors (Malus × domestica Borkh) based on AFLP and microsatellite markers. Mol Breeding 15:205–219

    CAS  Google Scholar 

  • Keulemans J, Eyssen R, Colda G (1994) Improvement of seed set and seed germination in apple. In: Schmidt H, Kellerhals M (eds) Progress in temperate fruit breeding. Kluwer Academic Publishers, The Netherlands, pp 225–228

    Google Scholar 

  • Khan MA, Duffy B, Gessler C, Patocchi A (2006) QTL mapping of fire blight resistance in apple. Mol Breed 17:299–306

    Google Scholar 

  • Kim MY, Song KJ, Hwang JH, Shin YU, Lee HJ (2003a) Development of RAPD and SCAR markers linked to the Co gene conferring columnar growth habit in apple (Malus pumila Mill.). J Hortic Sci Biotech 78:512–517

    CAS  Google Scholar 

  • Kim JY, Seo YS, Kim JE, Sung SK, Song KJ, An GH, Kim WT (2001) Two polyphenol oxidases are differentially expressed during vegetative and reproductive development and in response to wounding in the Fuji apple. Plant Sci 161:1145–1152

    CAS  Google Scholar 

  • Kim S-H, Lee J-R, Hong S-T, Yoo Y-K, An G, Kim S-R (2003b) Molecular cloning and analysis of anthocyanin biosynthesis genes preferentially expressed in apple skin. Plant Sci 165:403–413

    CAS  Google Scholar 

  • King GJ, Lynn JR, Dover CJ, Evans KM, Seymore GB (2001) Resolution of quantitative trait loci for mechanical measures accounting for genetic variation in fruit texture of apple (Malus pumila Mill.). Theor Appl Genet 100:1227–1235

    Google Scholar 

  • King GJ, Maliepaard C, Lynn JR, Alston FH, Durel CE, Evans KM, Griffon B, Laurens F, Manganaris AG, Schrevense E, Tartarini S (2000) Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theor Appl Genet 100:1074–1084

    Google Scholar 

  • Kitahara K, Matsumoto S, Yamamoto T, Soejima J, Kimura T, Komatsu H, Abe K (2005) Parent identification of eight apple cultivars by S-RNase analysis and simple sequence repeat markers. HortScience 40:314–317

    CAS  Google Scholar 

  • Kitahara K, Ohtsubo T, Soejima J, Matsumoto S (2004) Cloning and characterization of apple class B MADS-box genes including a novel AP3 homologue MdTM6. J Jap Soc Hortic Sci 73:208–215

    CAS  Google Scholar 

  • Klein LG (1958) The inheritance of certain fruit characters in the apple. Proc Am Soc Hortic Sci 72:1–14

    CAS  Google Scholar 

  • Knight RL (1962) Fruit breeding. Annu Rpt E Malling Res Sta for 1961, 102–105

    Google Scholar 

  • Knight RL, Briggs JB, Massee AM, Tydeman HM (1962) The inheritance of resistance to wooly aphid, Eriosoma lanigerum (Hausmn.) in the apple. J Hortic Sci 37:207–218

    Google Scholar 

  • Kochhar S, Watkins C, Conklin P, Brown S (2003) A quantitative and qualitative analysis of antioxidant enzymes in relation to susceptibility of apples to superficial scald. J Amer Soc Hortic Sci 128:910–916

    CAS  Google Scholar 

  • Korban S (1986) Interspecific hybridization in Malus. HortScience 21:41–48

    Google Scholar 

  • Korban S, Dayton D (1983) Evaluation of Malus germplasm for resistance to powdery mildew. HortScience 18:219–220

    Google Scholar 

  • Korban SS, Skirvin RM (1984) Nomenclature of the cultivated apple. HortScience 19:177–180

    Google Scholar 

  • Korban SS, Swiader JM (1984) Genetic and nutritional status in bitter pit-resistant and susceptible apple seedlings. J Amer Soc Hortic Sci 109:428–432

    CAS  Google Scholar 

  • Kotoda N, Wada M, Komori S, Kidou S-I, Abe K, Masuda T, Soejima J (2000) Expression pattern of homologues of floral meristem identity genes LFY and AP1 during flower development in apple. J Amer Soc Hortic Sci 125:398–403

    CAS  Google Scholar 

  • Kotoda N, Wada M, Kusaba S, Kano-Murakami Y, Masuda T, Soejima J (2002) Overexpression of MdMADS5, an APETALA1-like gene of apple, causes early flowering in transgenic Arabidopsis. Plant Sci 162:679–687

    CAS  Google Scholar 

  • Krebitz M, Wagner B, Ferreira F, Peterbauer C, Campillo N, Witty M, Kolarich D, Steinkellner H, Scheiner O, Breiteneder H (2003) Plant-based heterologous expression of Mal d 2, a thaumatin-like protein and allergen of apple (Malus domestica), and its characterization as an antifungal protein. J Mol Biol 329:712–730

    Google Scholar 

  • Kusaba S, Honda C, Kano-Murakami Y (2001) Isolation and expression analysis of gibberellin 20-oxidase homologous gene in apple. J Exp Bot 52:375–376

    PubMed  CAS  Google Scholar 

  • Labuschagne IF, Louw JH, Schmidt K, Sadie A (2003) Selection for increased budbreak in apple. J Am Soc Hortic Sci 128:363–373

    Google Scholar 

  • Labuschagne I, Lowu J, Schmidt K, Sadie A (2002) Genetic variation in chilling requirement in apple progeny. J Am Soc Hortic Sci 127:663–672

    Google Scholar 

  • Lapins KO (1974) Spur type growth habit in 60 apple progenies. J Am Soc Hortic Sci 99:568–572

    Google Scholar 

  • Lapins KO, Watkins R (1973) Genetics of compact growth p.136. Ann Rpt E Malling Res Sta for 1972

    Google Scholar 

  • Lata B (2007) Relationship between apple peel and the whole fruit antioxidant content: year and cultivar variation. J Agric Food Chem 55:663–671

    PubMed  CAS  Google Scholar 

  • Laurens F (1999) Review of the current apple breeding programs in the world: objectives for scion cultivar development. Acta Hortic 484:163–170

    Google Scholar 

  • Laurens F, Pitiot C (2003) French apple breeding program: a new partnership between INRA and the nurserymen of NOVADI. Acta Hortic 622:575–582.

    Google Scholar 

  • Lee KW, Kim YJ, Kim D-O, Lee HJ, Lee CY (2003) Major phenolics in apple and their contribution to the total antioxidant capacity. J Agric Food Chem 51:6516–6520

    PubMed  CAS  Google Scholar 

  • Lee YP, Yu GH, Seo YS, Han SE, Choi YO, Kim D, Mok IG, Kim WT, Sung SK (2007) Microarray analysis of apple gene expression engaged in early fruit development. Plant Cell Rep. Feb. 9 (Epub ahead of print)

    Google Scholar 

  • Lespinasse Y, Fouillet A, Flick JD, Lespinasse JM, Delort F (1988) Contributions to genetic studies in apple. Acta Hort 224:99–108

    Google Scholar 

  • Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003a) Mapping quantitative physiological traits in apple (Malus × domestica Borkh.). Plant Mol Biol 52:511–526

    CAS  Google Scholar 

  • Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003b) Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor Appl Genet 106:1497–1508

    CAS  Google Scholar 

  • Liebhard R, Koller B, Patocchi A, Kellerhals M, Pfammatter W, Jermini M, Gessler C (2003c) Mapping quantitative field resistance against apple scab in a ‘Fiesta’ × ‘Discovery’ progeny. Phytopath 93:493–501

    Google Scholar 

  • Mabberley DJ, Jarvis CE, Juniper BE (2001) The name of the apple. Telopea 9:421–430

    Google Scholar 

  • Maliepaard C, Alston F, van Arkel G, Brown L, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, others (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73

    CAS  Google Scholar 

  • Markwick NP, Docherty LC, Phung MM, Lester MT, Murry C, Yao JL, Mitra DS, Cohen D, Beuning LL, Kutty-Amma S, Christeller JT (2003) Transgenic tobacco and apple plants expressing biotin-binding proteins are resistant to two cosmopolitan insect pests, potato tuber moth and lightbrown apple moth, respectively. Transgenic Res 12:671–681

    PubMed  CAS  Google Scholar 

  • Markussen T, Krüger J, Schmidt H, Dunemann F (1995) Identification of PCR-based markers linked to the powdery-mildew-resistance gene Pl (1) from Malus robusta in cultivated apple. Plant Breed 114:530–534

    CAS  Google Scholar 

  • Marzban G. Puehringer H, Dey R, Brynda S, Ma Y, Martinelli A, Zaccarini M, van der Weg E, Housley Z, Kolarich D, Altmann F, Laimer M (2005) Localisation and distribution of the major allergens in apple fruits. Plant Sci 169:387–394

    CAS  Google Scholar 

  • Matsumoto S, Kitaharah K, Komatsu H, Abe K (2006) Cross-compatibility of apple cultivars possessing S-RNase alleles of similar sequence. J Hortic Sci Biotech 81:934–936

    CAS  Google Scholar 

  • Moore M (1960) Apple rootstocks susceptible to scab, mildew and canker for use in glasshouse and field experiments. Plant Path 9:84–87

    Google Scholar 

  • Morgan J, Richards A (1993) The book of apples. Ebury Press LTD, London

    Google Scholar 

  • Mowry JB, Dayton DF (1964) Inheritance of susceptibility to apple blotch. J Hered 55:129–132

    Google Scholar 

  • Mowry JB (1964) Inheritance of susceptibility to Gymnosporangium juniperi-virginianae. Phytopathology 54:1363–1366

    Google Scholar 

  • Murata M, Haruta M, Murai N, Tanikawa N, Nishimura M, Homma S, Itoh Y (2000) Transgenic apple (Malus × domestica) shoot showing low browning potential. J Agric Food Chem 48:5243–5248

    PubMed  CAS  Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk Y-K (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166

    PubMed  Google Scholar 

  • Norelli JL, Jones AL, Aldwinckle HS (2003) Fire blight management in the twenty-first century. Plant Dis 87:756–765

    Google Scholar 

  • Nybom N (1959) On the inheritance of acidity in cultivated apples. Hereditas 45:332–350

    Google Scholar 

  • Oh DH, Song KJ, Shin YU, Chung W-I (2000) Isolation of a cDNA encoding a 31-kDa, pathogenesis-related 5/thaumatin-like (PR5/TL) protein abundantly expressed in apple fruit (Malus domestica cv. Fuji). Biosci Biotechnol Biochem 64:355–362

    PubMed  CAS  Google Scholar 

  • Oraguzie NC, Iwanami H, Soejima J, Harada T, Hall A (2004) Inheritance of the Md-ACS1 gene and its relationship to fruit softening in apple (Malus × domestica Borkh.). Theor Appl Genet 108:1526–1533

    PubMed  CAS  Google Scholar 

  • Oraguzie NC, Volz RK, Whitworth CJ, Bassett HCM (2007) Influence of Md-ACS1 allelotype and harvest season within an apple germplasm collection on fruit softening during cold air storage. Postharvest Biol Tech 44:212–219

    CAS  Google Scholar 

  • ORourke D (2003) World production, trade, consumption and economic outlook for apples. In: Ferree DC, Warrington I (eds) Apples: botany, production and uses. CAB International, Wallingford, UK, pp 15–29

    Google Scholar 

  • Park SC, Sugimoto N, Larson MD, Beaudry R, van Nocker, S (2006) Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags. Plant Physiol 141:811–824

    PubMed  CAS  Google Scholar 

  • Patocchi A, Walser M, Tartarini S, Broggini GA, Gennari F, Sansavini S, Gessler C (2005) Identification by genome scanning approach (GSA) of a microsatellite tightly associated with the apple scab resistance gene Vm. Genome 48:630–636

    PubMed  CAS  Google Scholar 

  • Pechous SW, Whitaker BD (2002) Cloning and bacterial expression of a 3-hydroxy-3-methylglutaryl-CoA reductase cDNA (HMG1) from peel tissue of apple fruit. J Plant Physiol 159:907–916

    CAS  Google Scholar 

  • Pechous SW, Whitaker BD (2004) Cloning and functional expression of an (E,E)-α-farnesene synthase cDNA from peel tissue of apple fruit. Planta 219:84–94

    PubMed  CAS  Google Scholar 

  • Pichler FB, Walton EF, Davy M, Triggs C, Janssen B, Wünsche JN, Putterill J, Schaffer RJ (2007) Relative developmental, environmental, and tree-to-tree variability in buds from field-grown apple trees. Tree Genet Genomics 3:1614–2942

    Google Scholar 

  • Phillips JB, Robertson KR, Rohrer JR, Smith PG (1991) Origins and evolution of subfam. Maloideae (Rosaaceae). Syst Bot 16:303–332

    Google Scholar 

  • Ponomarenko W (1983) History of apple Malus domestics. Both origin and evoluation. Bot Zh USSR 76:10–18

    Google Scholar 

  • Poupard P, Parisi L, Campion C, Ziadi S, Simoneau P (2003) A wound- and ethephon-inducible PR-10 gene subclass from apple is differentially expressed during infection with a compatible and an incompatible race of Venturia inaequalis. Physiol Mol Plant Path 62:3–12

    CAS  Google Scholar 

  • Puhringer H, Moll D, Hoffman-Sommergruber K, Watillon B, Katinger H, Camara-Machado ML (2000) The promoter of an apple Ypr 10 gene, encoding the major allergen Mal d 1, is stress- and pathogen-inducible. Plant Sci 152: 35–50

    CAS  Google Scholar 

  • Radchuk V, Korkhovoy V (2005) The rolB gene promotes rooting in vitro and increases fresh root weight in vivo of transformed apple scion cultivar ‘Florina’. Plant Cell Tissue Organ Cult 81:203–212

    CAS  Google Scholar 

  • Roche P, Alston F, Maliepaard C, Evans K, Vrielink R, Dunemann F, Markussen T, Tartarini S, Brown LM, Ryder C, King GJ (1997) RFLP and RAPD markers linked to the rosy leaf curling aphid resistance gene Sd 1 in apple. Theor Appl Genet 94:528–533

    CAS  Google Scholar 

  • Rupasinghe HP, Almquist KC, Paliyath G, Murr DP (2001) Cloning of hmg1 and hmg2 cDNAs encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase and their expression and activity in relation to α-farnesene synthesis in apple. PlantPhysiol Biochem 39:933–947

    CAS  Google Scholar 

  • Sáchez-Torres P, González-Candelas L (2003) Isolation and characterization of genes differentially expressed during the interaction between apple fruit and Penicillium expansum. Mol Plant Path 4:447–457

    Google Scholar 

  • Saito KI, Niizeki M (1988) Fundamental studies on breeding of apple. XI. Genetic analysis of resistance to alternaria blotch (Alternaria mali Roberts) in the interspecific crosses. Bulletin of the Faculty Agriculture, Hirosaki University 50:27–34

    Google Scholar 

  • Sakamoto T, Kusaba S, Kano-Murakami Y, Fukumoto M, Iwahori S (1998) Two different types of homeobox genes exist in apple. J Jap Soc Hort Sci 67:372–374

    CAS  Google Scholar 

  • Sandanayaka WRM, Bus VGM, Connolly P, Newcomb R (2003) Characteristics associated with woolly apple aphid Eriosoma lanigerum, resistance of three apple rootstocks. Entomologia Experimentalis et Applicata 109:63–72

    Google Scholar 

  • Sax K (1931) The origins and relationships of the Pomoideae. J Arn Arbor 12:3–22

    Google Scholar 

  • Schirrmacher G, Schempp H (2003) Antioxidative potential of flavonoid-rich extracts as new quality marker for different apple varieties. J Appl Bot 77:163–166

    CAS  Google Scholar 

  • Schmitz-Eiberger M, Weber V, Treutter D, Baab G, Lorenz J (2003) Bioactive components in fruits from different apple varieties. J Appl Bot 77:176–171

    Google Scholar 

  • Sedira M, Holefors A, Welander M (2001) Protocol for transformation of the apple rootstock Jork 9 with the rolB gene and its influence on rooting. Plant Cell Rep 20:517–524

    CAS  Google Scholar 

  • Seymour GB, Manning K, Ericksson EM, Popovich AH, King GJ (2002) Genetic identification and genomic organization of factors affecting fruit texture. J Exper Bot 53:2065–2071

    CAS  Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2:202–224

    Google Scholar 

  • Soejima J, Abe N, Kotoda N, Kato H (2000) Recent progress of apple breeding at the Apple Research Center in Morioka. Acta Hortic 538:211–214

    Google Scholar 

  • Souleyre EJF, Greenwood DR, Friel EN, Karunairetnam S, Newcomb RD (2005) An alcohol acyl transferase from apple (cv. Royal Gala), MpAAT1, produces esters involved in apple fruit flavor. FEBS J 272:3132–3144

    PubMed  CAS  Google Scholar 

  • Stanley D, Fitzgerald AM, Farnden KJ, MacRae EA (2002) Characterization of putative α-amylases from apple (Malus domestica) and Arabidopsis thaliana. Biologia Bratislava 57:137–148

    CAS  Google Scholar 

  • Sung SK, An G (1997) Molecular cloning and characterization of a MADS-Box cDNA clone of the Fuji apple. Plant Cell Physiol 38:484–489

    PubMed  CAS  Google Scholar 

  • Sung SK, Jeong DH, Nam J, Kim SH, Kim SR, An G (1998) Expressed sequence tags of fruits, peels, and carpels and analysis of mRNA expression levels of the tagged cDNAs of fruits from the Fuji apple. Mol Cells 8:565–577

    PubMed  CAS  Google Scholar 

  • Sung SK, Yu GH, An G (1999) Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiol 120:969–978

    PubMed  CAS  Google Scholar 

  • Sung SK, Yu GH, Nam J, Jeong DH, An G (2000) Developmentally regulated expression of two MADS-box genes, MdMADS3 and MdMADS4, in the morphogenesis of flower buds and fruits in apple. Planta 210:519–528

    PubMed  CAS  Google Scholar 

  • Szankowski I, Briviba K, Fleschhut J, Schönherr J, Jacobsen H-J, Kiesecker H (2003) Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep 22:141–149

    PubMed  CAS  Google Scholar 

  • Tao R, Uratsu SL, Dandekar AM (1995) Sorbitol synthesis in transgenic tobacco with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenease. Plant Cell Physiol 36:525–532

    PubMed  CAS  Google Scholar 

  • Takos AM, Jaffé FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232

    PubMed  CAS  Google Scholar 

  • Tartarini S, Sansavini S (2003) The use of molecular markers in pome fruit breeding. Acta Hort 622:129–140

    CAS  Google Scholar 

  • Tartarini S, Gennari F, Pratesi D, Palazzetti C, Sansavini S, Parisi L, Fouillet A, Fouilet V, Durel CE (2004) Characterisation and genetic mapping of a major scab resistance gene from the old Italian apple cultivar ‘Durello di Forli’. Acta Hortic 663:129–133

    CAS  Google Scholar 

  • Thomsen KA, Eriksen EN (2006) Effect of temperatures during seed development and pretreatment on seed dormancy of Malus sargentii and M. sieboldii. Seed Sci Tech 34:215–220

    Google Scholar 

  • Tian YK, Wang CH, Zhang JS, James C, Dai HY (2005) Mapping Co, a gene controlling the columnar phenotype of apple, with molecular markers. Euphytica 145:181–188

    CAS  Google Scholar 

  • van der Linden CG, Vosman B, Smulders MJ (2002) Cloning and characterization of four apple MADS box genes isolated from vegetative tissue. J Exper Bot 53:1025–1036

    Google Scholar 

  • Vavilov N (1949–1950) The origin, variation, immunity and breeding of cultivated crops. Chronica Botanica, Waltham, Massachusetts

    Google Scholar 

  • Vinatzer B, Patocchi A, Gianfranceschi L, Tartarini S, Zhang H, Gessler C, Sansavini S (2001) Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant Microbe Interact 14:508–515

    PubMed  CAS  Google Scholar 

  • Vinatzer B, Patocchi A, Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (2004) Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab-resistant accessions in Malus germplasm. Plant Breed 123:321–326

    CAS  Google Scholar 

  • Viss WJ, Pitrak J, Humann J, Cook M, Driver J, Ream W (2003) Crown-gall-resistant transgenic apple trees that silence Agrobacterium tumefaciens oncogenes. Mol Biol 12:283–295

    CAS  Google Scholar 

  • Visser T (1951) Floral biology and crossing technique in apples and pears. Meded Dir Tuinb 14:707–726

    Google Scholar 

  • Volz RK, Alspach PA, White AG, Ferguson IB (2001) Genetic variability in apple fruit storage disorders. Acta Hort 553:241–244

    Google Scholar 

  • Wada M, Cao Q-F, Kotoda N, Soejima J-I, Masuda T (2002) Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Mol Biol 49:567–577

    PubMed  CAS  Google Scholar 

  • Watillon B, Kettmann R, Boxus P, Burny A (1997) Knotted1-like homeobox genes are expressed during apple tree (Malus domestica [L.] Borkh) growth and development. Plant Mol Biol 33:757–763

    PubMed  CAS  Google Scholar 

  • Watkins R (1995) Apple and pear. In: Smartt J, Simmonds NW (eds) Evolution of Crop Plants. Longman, London

    Google Scholar 

  • Watkins R, Spangelo LP (1970) Components of genetic variance for plant survival and vigor of apple trees. Theor Appl Genet 40:195–203

    Google Scholar 

  • Watkins R, Werts JM (1971) Preselection for Phytophthora cactorum (Leb. & Con) Schroet. resistance in apple seedlings. Ann Appl Biol 67:153–156

    Google Scholar 

  • Way R, Aldwinckle H, Lamb R, Rejman A, Sansavini S, Shen T, Watkins R, Westwood M, Yoshida Y (1991) Apples (Malus). In: Moore J, Ballington J (eds) Genetic resources in temperate fruit and nut crops. Acta Hortic 290:3–46

    Google Scholar 

  • Way RD, Lamb RC, Pratt C, Cummins JN (1976) Pale green lethal gene in apple clones. J Am Soc Hortic Sci 101:679–684

    Google Scholar 

  • Webster AD, Wertheim SJ (2003) Apple rootstocks. In: Ferree DC, Warrington I (eds) Apples: botany, production and uses. CAB International, Wallingford, UK, pp 91–124

    Google Scholar 

  • Weeden NF, Hemmat M, Lawson DM, Lodhi M, Bell RL, Manganaris AG, Reish BI, Brown SK, Ye GN (1994) Development and application of molecular marker linkage maps in woody fruit crops. Euphytica 77:71–75

    Google Scholar 

  • Weeden NF, Lamb RC (1987) Genetics and linkage analysis of 19 isozyme loci in apple. J Am Soc Hortic Sci 112:865–872

    CAS  Google Scholar 

  • Wegrzyn T, Reilly K, Cipriani G, Murphy P, Newcomb R, Gardner R, MacRae E (2000) A novel α-amylase gene is transiently upregulated during low temperature exposure in apple fruit. Eur J Biochem 267:1313–1322

    PubMed  CAS  Google Scholar 

  • Xu Q, Wen X, Deng X (2007) Phylogenetic and evolutionary analysis of NBS-encoding genes in Rosaceae fruit crops. Mol Phylogenet Evol 44:315–324

    PubMed  CAS  Google Scholar 

  • Yamada K, Mori H, Yamaki S (1999) Identification and cDNA cloning of a protein abundantly expressed during apple fruit development. Plant Cell Physiol 40:198–204

    PubMed  CAS  Google Scholar 

  • Yamada K, Oura Y, Mori H, Yamaki S (1998) Cloning of NAD-dependent sorbitol dehydrogenase from apple fruit and gene expression. Plant Cell Physiol 39:1375–1379

    PubMed  CAS  Google Scholar 

  • Yao C, Conway WS, Ren R, Smith D, Ross GS, Sams CE (1999a) Gene encoding polygalacturonase inhibitor in apple fruit is developmentally regulated and activated by wounding and fungal infection. Plant Mol Biol 39:1231–1241

    CAS  Google Scholar 

  • Yao J-L, Dong Y-H, Kvarnheden A, Morris B (1999b) Seven MADS-box genes in apple are expressed in different parts of the fruit. J Am Soc Hortic Sci 124:8–13

    CAS  Google Scholar 

  • Yao J-L, Cohen D, Atkinson R, Richardson K, Morris B (1995) Regeneration of transgenic plants from the commercial apple cultivar Royal Gala. Plant Cell Rep 14:407–412

    CAS  Google Scholar 

  • Yao J-L, Dong Y-H, Morris B (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Nat Acad Sci USA 98:1306–1311

    PubMed  CAS  Google Scholar 

  • Yao Y-X, Li M, Liu Z, Hao Y-H, Zhai H (2007) A novel gene, screened by cDNA-AFLP approach, contributes to lowering the acidity of fruit in apple. Plant Physiol Biochem 45:139–145

    PubMed  CAS  Google Scholar 

  • Zhang WB, Zhang JR, Hu XL (1993) Distribution and diversity of Malus resources in Yunnan, China. HortScience 28:978–980

    Google Scholar 

  • Zhu L-H, Ahlman A, Li X-Y, Welander M (2001a) Integration of the rolA gene into the genome of the vigorous apple rootstock A2 reduced plant height and shortened internodes. J Hortic Sci Biotech 76:758–763

    CAS  Google Scholar 

  • Zhu L-H, Holefors A, Ahlman A, Xue Z-T, Welander M (2001b) Transformation of the apple rootstock M.9/29 with the rolB gene and its influence on rooting and growth. Plant Sci 160:433–439

    CAS  Google Scholar 

  • Zohary D, Hopf M (1993) Domestication of Plants in the Old World: the Origin and Spread of Cultivated plants in West Asia, Europe and the Nile Valley, 2nd. Clarendon Press, Oxford

    Google Scholar 

  • Zhou-Zhi Q (1999) The apple genetic resources in China: the apple species and their distributions, informative characteristics and utilization. Genet Res Crop Evol 46:599–609

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hancock, J., Luby, J., Brown, S., Lobos, G. (2008). Apples. In: Hancock, J.F. (eds) Temperate Fruit Crop Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6907-9_1

Download citation

Publish with us

Policies and ethics