Advertisement

Genetic Relatedness Among the Different Genetic Lineages of Pseudomonas syringae pv. phaseolicola

  • M. E. Führer
  • L. Navarro de la Fuente
  • L. Rivas
  • J. L. Hernandez-Flores
  • R. Garcidueñas-Piña
  • A. Alvarez-Morales
  • Jesus Murillo

Pseudomonas syringae pv. phaseolicola is an economically important pathogen of bean (Phaseolus vulgaris L.) and a research model in phytobacteriology. The analysis of the physiological and genetic variability differentiates the strains isolated from kudzu (Pueraria lobata) and the strains that do not produce phaseolotoxin from most of the common bean strains. We evaluated several techniques to study the variability of P. syringae pv. phaseolicola and the genetic relatedness among these three groups of strains, in order to understand its epidemiology and the main mechanisms operating the evolution of its virulence gene complement. Insertion sequence typing with IS801 revealed substantial variability among 32 P. syringae pv. phaseolicola strains, and allowed the differentiation of three groups of strains. This classification agrees with the grouping resulting from ribotyping and with previous results of other researchers, suggesting that IS801 fingerprinting is a valuable tool to study genetic variability. Our results support the idea that strains from kudzu form a group differentiable from the other types of strains, and that nontoxigenic strains might represent an ancestor of P. syringae pv. phaseolicola before it acquired the phaseolotoxin biosynthesis genes

Keywords

P. syringae pv. glycinea kudzu Pueraria lobata phaseolotoxin virulence genes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alavi S. M., Poussier S. and Manceau C., 2007, Characterization of ISXax1, a novel insertion sequence restricted to Xanthomonas axonopodis pv. phaseoli (variants fuscans and non-fuscans) and Xanthomonas axonopodis pv. vesicatoria. Appl Environ Microbiol 73: 1678–1682.PubMedCrossRefGoogle Scholar
  2. Bidet P., Lalande V., Salauze B., Burghoffer B., Avesani V., Delmee M., Rossier A., Barbut F. and Petit J.-C., 2000, Comparison of PCR-ribotyping, arbitrarily primed PCR, and pulsed-field gel electrophoresis for typing Clostridium difficile. J Clin Microbiol 38: 2484–2487.PubMedGoogle Scholar
  3. Clerc A., Manceau C. and Nesme X., 1998, Comparison of randomly amplified polymorphic DNA with amplified fragment length polymorphism to assess genetic diversity and genetic relatedness within genomospecies III of Pseudomonas syringae. Appl Environ Microbiol 64: 11180–11187.Google Scholar
  4. Gardan L., Bollet C., Abu Ghorrah M., Grimont F. and Grimont P. A. D., 1992, DNA relatedness among the pathovar strains of Pseudomonas syringae subsp. savastanoi Janse (1982) and proposal of Pseudomonas savastanoi sp. nov. Int J Syst Bacteriol 42: 606–612.CrossRefGoogle Scholar
  5. González A. J., Landeras E. and Mendoza M. C., 2000, Pathovars of Pseudomonas syringae causing bacterial brown spot and halo blight in Phaseolus vulgaris L. are distinguishable by ribotyping. Appl Environ Microbiol 66: 850–854.PubMedCrossRefGoogle Scholar
  6. González C., Szurek B., Manceau C., Mathieu T., Séré Y. and Verdier V., 2007, Molecular and pathotypic characterization of new Xanthomonas oryzae strains from West Africa. Mol Plant-Microbe Interact 20: 534–546.PubMedCrossRefGoogle Scholar
  7. Gürtler V. and Mayall B., 2001, Genomic approaches to typing, taxonomy and evolution of bacterial isolates. Int J Syst Evol Microbiol 51: 3–16.PubMedGoogle Scholar
  8. Güven K., Jones J. B., Momol M. T. and Dickstein E. R., 2004, Phenotypic and genetic diversity among Pseudomonas syringae pv. phaseolicola. J Phytopathol 152: 658–666.CrossRefGoogle Scholar
  9. Joardar V., Lindeberg M., Jackson R. W., Selengut J., Dodson R., Brinkac L. M., Daugherty S. C., DeBoy R., Durkin A. S., Giglio M. G., Madupu R., Nelson W. C., Rosovitz M. J., Sullivan S., Crabtree J., Creasy T., Davidsen T., Haft D. H., Zafar N., Zhou L. W., Halpin R., Holley T., Khouri H., Feldblyum T., White O., Fraser C. M., Chatterjee A. K., Cartinhour S., Schneider D. J., Mansfield J., Collmer A. and Buell C. R., 2005, Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol 187: 6488–6498.PubMedCrossRefGoogle Scholar
  10. Kinscherf T. G., Coleman R. H., Barta T. M. and Willis D. K., 1991, Cloning and expression of the tabtoxin biosynthetic region from Pseudomonas syringae. J Bacteriol 173: 4124–4132.PubMedGoogle Scholar
  11. Manceau C. and Horvais A., 1997, Assessment of genetic diversity among strains of Pseudomonas syringae by PCR-restriction fragment length polymorphism analysis of rRNA operons with special emphasis on P. syringae pv. tomato. Appl Environ Microbiol 63: 498–505.PubMedGoogle Scholar
  12. Marques A. S. d. A., Corbière R., Gardan L., Tourte C., Manceau C., Taylor J. D. and Samson R., 2000, Multiphasic approach for the identification of the different classification levels of Pseudomonas savastanoi pv. phaseolicola. Eur J Plant Pathol 106: 715–734.CrossRefGoogle Scholar
  13. Nagahama K., Yoshino K., Matsuloa M., Sato M., Tanase S., Ogawa T. and Fukuda H., 1994, Ethylene production by strains of the plant-pathogenic bacterium Pseudomonas syringae depends upon the presence of indigenous plasmids carrying homologous genes for the ethylene-forming enzyme. Microbiology 140: 2309–2313.PubMedCrossRefGoogle Scholar
  14. Oguiza J. A., Rico A., Rivas L. A., Sutra L., Vivian A. and Murillo J., 2004, Pseudomonas syringae pv. phaseolicola can be separated into two genetic lineages distinguished by the possession of the phaseolotoxin biosynthetic cluster. Microbiology 150: 473–482.PubMedCrossRefGoogle Scholar
  15. Richter G. Y., Björklöf K., Romantschuk M. and Mills D., 1998, Insertion specificity and trans-activation of IS801. Mol Gen Genet 260: 381–387.PubMedCrossRefGoogle Scholar
  16. Rico A., López R., Asensio C., Aizpún M., Asensio-S.-Manzanera C. and Murillo J., 2003, Nontoxigenic strains of P. syringae pv. phaseolicola are a main cause of halo blight of beans in Spain and escape current detection methods. Phytopathology 93: 1553–1559.PubMedCrossRefGoogle Scholar
  17. Rivas L. A., Mansfield J., Tsiamis G., Jackson R. W. and Murillo J., 2005, Changes in race-specific virulence in Pseudomonas syringae pv. phaseolicola are associated with a chimeric transposable element and rare deletion events in a plasmid-borne pathogenicity island. Appl Environ Microbiol 71: 3778–3785.PubMedCrossRefGoogle Scholar
  18. Sarkar S. F. and Guttman D. S., 2004, Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Appl Environ Microbiol 70: 1999–2012.PubMedCrossRefGoogle Scholar
  19. Sawada H., Suzuki F., Matsuda I. and Saitou N., 1999, Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. J Mol Evol 49: 627–644.PubMedCrossRefGoogle Scholar
  20. Smith I. M., Dunez J., Lelliott R. A., Phillips D. H. and Archer S. A., 1988, European Handbook of Plant Diseases. London: Blackwell.Google Scholar
  21. Tsiamis G., Mansfield J. W., Hockenhull R., Jackson R. W., Sesma A., Athanassopoulos E., Bennett M. A., Stevens C., Vivian A., Taylor J. D. and Murillo J., 2000, Cultivar specific avirulence and virulence functions assigned to avrPphF in Pseudomonas syringae pv. phaseolicola, the cause of bean halo-blight disease. EMBO J 19: 3204–3214.PubMedCrossRefGoogle Scholar
  22. Völksch B., Laplace F. and Fritsche W., 1984, Studies on the variability of the phaseolotoxin production by Pseudomonas syringae pv. phaseolicola. Zentralbl Mikrobiol 139: 109–118.PubMedGoogle Scholar
  23. Völksch B. and Weingart H., 1997, Comparison of ethylene-producing Pseudomonas syringae strains isolated from kudzu (Pueraria lobata) with Pseudomonas syringae pv. phaseolicola and Pseudomonas syringae pv. glycinea. Eur J Plant Pathol 103: 795–802.CrossRefGoogle Scholar
  24. Watanabe K., Nagahama K. and Sato M., 1998, A conjugative plasmid carrying the efe gene for the ethylene-forming enzyme isolated from Pseudomonas syringae pv. glycinea. Phytopathology 88: 1205–1209.PubMedCrossRefGoogle Scholar
  25. Yamamoto S., Kasai H., Arnold D. L., Jackson R. W., Vivian A. and Harayama S., 2000, Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146: 2385–2394.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, B.V 2008

Authors and Affiliations

  • M. E. Führer
    • 1
  • L. Navarro de la Fuente
    • 1
  • L. Rivas
    • 1
  • J. L. Hernandez-Flores
    • 2
  • R. Garcidueñas-Piña
    • 2
  • A. Alvarez-Morales
    • 2
  • Jesus Murillo
    • 1
  1. 1.Laboratorio de Patología VegetalUniversidad Pública de NavarraSpain
  2. 2.Depto. Ingeniería GenéticaCINVESTAV IPN-Unidad IrapuatoMéxico

Personalised recommendations