Advertisement

A Multimodel Framework in Support of Malaria Surveillance and Control

  • Daniel Ruiz
  • Stephen J. Connor
  • Madeleine C. Thomson
Part of the Advances in Global Change Research book series (AGLO, volume 30)

Abstract

Mathematical models have played a significant role in understanding the complexity of malaria transmission dynamics. This paper describes the first steps in an effort to create an ensemble framework of various mathematical models, an approach that has been widely used to represent uncertainty in seasonal climate forecasting. This tool will be implemented to explore the role that both climatic and non-climatic factors play in fluctuations and trends in malaria incidence, and to offer useful information to effectively guide decision-makers in risk assessment, malaria control investments and choice of interventions. The initiative aims to contribute to a large programme, the Integrated Surveillance and Control System, an ambitious idea that has been proposed as an adaptation strategy to prevent the possible adverse effects of climate change on human health in Colombia. Currently, the ensemble framework is being used to: compare the simulation outputs of the selected models with actual malaria morbidity profiles observed in several endemic/epidemic-prone regions; assess changing climate and future scenarios; simulate the impact of indoor residual spraying campaigns; conduct stability analysis; and stimulate an interactive learning environment.

Keywords

Malaria modelling dynamical models ensemble early warning system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aron, J. and R.M. May (1982). The population dynamics of malaria. Anderson, R.M. (ed). The population dynamics of infectious diseases: theory and applications. Chapman & Hall, London, 139–179.Google Scholar
  2. Bouma, M., G. Poveda, W. Rojas, M.L. Quinones, J. Cox and J. Patz (1997). Predicting high-risk years for malaria in Colombia using parameters of El Niño-Southern Oscillation. Trop Med Int Health 2:1122–1127.CrossRefPubMedGoogle Scholar
  3. Doblas-Reyes, F.J., R. Hagedorn and T.N. Palmer (2005). The rationale behind the success of multi-model ensembles in seasonal forecasting. Part II: calibration and combination. Tellus 57A: 234–252.Google Scholar
  4. Dye, C. (1992). The analysis of parasite transmission by blood-sucking insects. Annu Rev Entomol 37: 1–19.CrossRefPubMedGoogle Scholar
  5. Epstein, P.R. (2000). Is global warming harmful to health? Scientific American, August 2000.Google Scholar
  6. Githeko, A.K. and W. Ndegwa (2001). Predicting malaria epidemics in the Kenyan highlands using climate data: a tool for decision makers. Glob Change Hum Health 2: 54–63.CrossRefGoogle Scholar
  7. Hagedorn, R., F.J. Doblas-Reyes and T.N. Palmer (2005). The rationale behind the success of multi-model ensembles in seasonal forecasting. Part I: basic concept. Tellus, 57A: 219–233.Google Scholar
  8. Hay, S.I., J. Cox, D.J. Rogers, S.E. Randolph, D.I. Stern, G.D. Shanks, M.F. Myers and R.W. Snow (2002). Climate change and the resurgence of malaria in the East African highlands. Nature 415: 905–909.CrossRefPubMedGoogle Scholar
  9. Hoshen, M.B. and A.P. Morse (2004). A weather-driven model of malaria transmission. Malaria J 3:32, doi:10.1186/1475–2875-3–32.CrossRefGoogle Scholar
  10. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) (2002). Executive summary of Colombia’s First National Communication to the United Nations Framework Convention on Climate Change, 22 pp.Google Scholar
  11. Instituto Nacional de Salud de Colombia (2005). Sistema Integrado de Vigilancia y Control de Malaria y Dengue en Colombia.Google Scholar
  12. Lindblade, K.A., E.D. Walker, A.W. Onapa, J. Katungu and M.L. Wilson (2000). Land use change alerts malaria transmission parameters modifying temperature in a highland area of Uganda. Trop Med Int Health 5: 263–274.CrossRefPubMedGoogle Scholar
  13. Lindsay, S.W. and M.H. Birley (1996). Climate change and malaria transmission. Ann Trop Med Parasitol 90: 573–588.PubMedGoogle Scholar
  14. Macdonald, G. (1957). The epidemiology and control of malaria. Oxford University Press, London.Google Scholar
  15. Martens, W.J.M. (1997). Health impacts of climate change and ozone depletion. An eco-epidemiological modelling approach. Maastricht, The Netherlands.Google Scholar
  16. Martens, P., R.S. Kovats, S. Nijhof, P. de Vries, M.T.J. Livermore, D.J. Bradley, J. Cox and A.J. McMichael (1999). Climate change and future populations at risk of malaria. Glob Environ Change 9: 89–107.CrossRefGoogle Scholar
  17. McKenzie, F.E., R.C. Wong and W.H. Bossert (1998). Discrete-event simulation models of Plasmodium falciparum malaria. Simulation 71(4): 213–217.CrossRefGoogle Scholar
  18. Patz, J.A., T.K. Graczyk, N. Geller and A.Y. Vittor (2000). Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30(12–13): 1395–405.CrossRefPubMedGoogle Scholar
  19. Patz, J.A., M. Hulme, C. Rosenzweig, T.D. Mitchell, R.A. Goldberg, A.K. Githeko, S. Lele, A.J. McMichael and D. Le Sueur (2002). Regional warming and malaria resurgence. Nature 420: 627–628.CrossRefPubMedGoogle Scholar
  20. Patz, J.A., D. Campbell-Lendrum, T. Holloway and J.A. Foley (2005). Impact of regional climate change on human health. Nature 438: 310–317.CrossRefPubMedGoogle Scholar
  21. Poveda, G. and W. Rojas (1997). Evidencias de la asociación entre brotes epidémicos de malaria en Colombia y el fenómeno El Niño-Oscilación del Sur. Revista de la Academia Colombiana de Ciencia 21:421–429.Google Scholar
  22. Poveda, G., N.E. Graham, P.R. Epstein, W. Rojas, M.L.Quinones, I.D. Velez and W.J.M. Martens (2000). Climate and ENSO variability associated with vector-borne diseases in Colombia. In: El Niño and the Southern Oscillation, Multi-scale Variability and Global and Regional Impacts. 1st edn. Diaz H.F. and Markgraf V. (eds). Cambridge University Press, Cambridge/New York, pp 183–204.Google Scholar
  23. Poveda, G, W. Rojas, M.L. Quiñones, I.D. Velez, R.I. Mantilla, D. Ruiz, J.S. Zuluaga and G.L. Rua (2001). Coupling between annual and ENSO timescales in the malaria-climate association in Colombia. Environ Health Perspect 109: 489–493.CrossRefPubMedGoogle Scholar
  24. Ruiz, D. (2005). Fase de Preparación (PDF-B) del proyecto Integrated National Adaptation Pilot (INAP): High Mountain Ecosystems, Colombia’s Caribbean Insular Areas, and Human Health–Sub-actividad ‘Modelación Biológica’, Actividad ‘Evaluación del Riesgo’, Área temática ‘Sistema de Alerta Temprana’, Componente ‘Salud Humana’. Grupo de Profundización en Hidroclimatología, Programa en Ingenieria Ambiental, Escuela de Ingenieria de Antioquia. Final report, 210 pp.Google Scholar
  25. Ruiz, D. and G. Yan (2003). Biology of African Highland Malaria: report. Department of Biological Sciences, State University of New York at Buffalo, 60 pp.Google Scholar
  26. Ruiz, D. and G. Yan (2004). Modeling malaria transmission for Kisii District in the highlands of Western Kenya. Part I: analysis of base scenarios. Department of Biological Sciences, State University of New York at Buffalo, 45 pp.Google Scholar
  27. Ruiz, D., G. Poveda, M.L. Quiñones, I.D. Velez, G. Rua, W. Rojas and J.S. Zuluaga (2002a). Modelación sistémica para el diagnóstico de la interacción clima-malaria en Colombia. Aplicación durante El Niño 1997–1998 y La Niña 1998–2000. Meteorol Colomb 5: 41–48.Google Scholar
  28. Ruiz, D., G. Poveda, M.L. Quiñones, I.D. Vélez, G. Rúa, W. Rojas, and J.S. Zuluaga (2002b). Modeling entomological-climatic interaction of malaria transmission at Nuquí (Colombian Pacific Coast). Case of study: El Niño 1997–1998 and La Niña 1998–2000. In: Conference Climate Variability and Change and their Health Effects in the Caribbean: Information for Climate Variability and Change Adaptation Planning in the Health Sector. PAHO/WHO. Bridgetown, Barbados.Google Scholar
  29. Ruiz, D., G. Poveda, R.I. Mantilla, M.L. Quiñones, I.D. Vélez, G. Rúa, W. Rojas and J.S. Zuluaga (2003). Modelación de la interacción entomológica-climática de la transmisión de la malaria mediante Dinámica de Sistemas1 Rev Colomb Entomol 29: 191–201.Google Scholar
  30. Ruiz, D., G. Poveda, I.D. Velez, M.L. Quiñones, G.L. Rua, L.E. Velasquez and J.S. Zuluaga (2006). Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: contributions to a National Malaria Early Warning System. Malaria J 5:66, doi:10.1186/1475–2875-5–66 (http://www.malariajournal.com/content/5/1/66).
  31. Sachs, J.D. (2001). Macroeconomics and health: investing in health for economic development. Report of the Commission on Macroeconomics and Health–World Health Organization, 213 pp.Google Scholar
  32. Ter Veen, J.M.L. (2002). The effect of climate, economics and environment on the transmission of malaria in the USA between 1900 and 1946. London School of Hygiene and Tropical Medicine, 72 pp.Google Scholar
  33. Thomson, M.C. and S.J. Connor (2001). The development of Malaria Early Warning Systems for Africa. Trends Parasitol 17(9): 438–445.CrossRefPubMedGoogle Scholar
  34. Thomson, M.C., F.J. Doblas-Reyes, S.J. Mason, R.Hagedorn, S.J. Connor, T. Phindela, A.P. Morse and T.N. Palmer (2006). Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 439: 576–579.CrossRefPubMedGoogle Scholar
  35. The World Bank Group (2006). Colombia-Integrated National Adaptation Program Project. Documents & Reports.Google Scholar
  36. World Health Organization (1994). World malaria situation in Part I. Wkly Epidemiol Rec 72:269–274.Google Scholar
  37. World Health Organization (2002). World Health Report 2002: Reducing risks, promoting healthy life. Publications of the World Health Organization, Geneva.Google Scholar
  38. World Health Organization (2003). Climate change and human health–Risks and responses: summary. Publications of the World Health Organization, ISBN 92 4 159081 5, Geneva, Switzerland, 38 pp.Google Scholar
  39. World Health Organization (2004). Using Climate to Predict Infectious Disease Outbreaks: A Review. Geneva: World Health Organization. (WHO/SDE/OEH/04.01).Google Scholar
  40. Worrall, E., S.J. Connor and M.C. Thomson (2007). A model to simulate the impact of timing, coverage and transmission intensity on the effectiveness of indoor residual spraying (IRS) for malaria control. Trop Med Int Health 12(1): 75–88.PubMedGoogle Scholar
  41. Yang, H. (2000). Malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector). Rev Saúde Pública 34(3): 223–231.PubMedGoogle Scholar
  42. Yang, H. and M. Ferreira (2000). Assessing the effects of global warming and local social and economic conditions on the malaria transmission. Rev Saúde Pública 34(3): 214–222.PubMedGoogle Scholar
  43. Zhou, G., N. Minakawa, A. Githeko and G. Yan (2004). Association between climate variability and malaria epidemics in the East African Highlands. PNAS USA 101(8): 2375–2380.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Daniel Ruiz
    • 1
    • 2
  • Stephen J. Connor
    • 2
  • Madeleine C. Thomson
    • 2
  1. 1.Grupo de Profundización en Hidroclimatología, Programa en Ingeniería Ambiental, Grupo de Investigatión ‘Gestión del Ambiente para el Bienestar Social - GABiS’Escuela de Ingeniería de AntioquiaEnvigadoColombia
  2. 2.International Research Institute for Climate and SocietyThe Earth Institute at Columbia UniversityNew YorkUSA

Personalised recommendations