Skip to main content

Remediation of Metal and Metalloid Contaminated Groundwater

  • Conference paper

This chapter describes the remediation of groundwater polluted by heavy metals. Special attention is paid to ‘pump and treat’ methods and to different in situ approaches. Emphasis is on microbial processes and their combination with physico-chemical systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agathos, S. (2005). Reible, D. D. and Lanczos, T., Ed. NATO Science Series IV, Earth and Environmental Sciences, Vol. 73. Springer-Verlag, Dordrecht, Netherlands. Assessment and Remediation of Contaminated Sediments, NATO-ARW Course on Sediment risks and treatment, Bratislava, 16-21 May 2005.

    Google Scholar 

  • Annachhatre, A. P. and Suktrakoolvait, S. (2001). Biological sulfate reduction using molasses as a carbon source, Water Environ. Res., 73, issue 1, 118-126. ISSN: 1061-4303, WEF (= Water Environment Federation), Alexandria, VA , USA.

    Article  CAS  Google Scholar 

  • Bastiaens, L., Gemoets, J., Van Linden, J., Vermeiren, G., Peeters, P., Boënne, W., Luyckx, J. P., and Diels, L. (2005). Alkalinity generating PRB for in situ treatment of a low pH ground-water. In Permeable Reactive Barriers & Reactive Zones, Proceedings of the 2nd International PRB/RZ symposium, Antwerp, November 14-16, edited by Bastiaens, L., ISBN905857007x, 78.

    Google Scholar 

  • Benner, S. G., Blowes, D. W. and Ptacek, C. J. (1997). A full-scale porous reactive wall for prevention of acid mine drainage. Ground water monitoring & remediation, 17, pp 99-107.

    Article  CAS  Google Scholar 

  • Cameron, R. E. (1992). Guide to site and soil description of hazardous waste site characterization. Volume 1: Metals. Environmental Protection Agency EPA/600/4-91/029.

    Google Scholar 

  • Diels, L., Spaans, P. H., Van Roy, S., Hooyberghs, L., Wouters, H., Walter, E., Winters, J., Macaskie, L., Pernfuss, B., Woebking, H., and Pümpel, T. (2001). Heavy metals removal by sand filters inoculated with metal sorbing and precipitating bacteria. Biohydrometallurgy -Fundamentals, Technology and Sustainable Development (part B) - pp 317-326.

    Google Scholar 

  • Diels, L., Geets, J., Dejonghe, W., Van Roy, S. and Vanbroekhoven, K. (2005a). Heavy metal immobilization in groundwater by in situ bioprecipitation: comments and questions about carbon source use, efficiency and sustainability of the process. Consoil 2005.

    Google Scholar 

  • Diels, L., Geets, J., Van Roy, S., Dejonghe, W., Gemoets, J. and Vanbroekhoven, K. (2005b). Bioremediation of heavy metal contaminated sites. In Soil Remediation series 6 (Proceedings of the European Summer School on Innovative Approaches to the Bioremediation of Contaminated Sites), ed. Faba, F., Canepa, P.

    Google Scholar 

  • Diels, L., Spaans, P. H., Van Roy, S., Hooyberghs, L., Wouters, H., Walter, E., Winters, J., Macaskie, L., Finlay, J., Pernfuss, B., Woebking, H. and Pümpel, T. (2003). Heavy metals removal by sand filters inoculated with metal sorbing and precipitating bacteria. Hydrometallurgy, 71, pp 235-241.

    Article  CAS  Google Scholar 

  • El Fantroussi, S., Naveau, H., and Agathos, S. N. (1998). Anaerobic dechlorinating bacteria. Biotechnol. Prog., 14, pp 167-175.

    Article  CAS  Google Scholar 

  • Francis, A. J. and Dodge, C. J. (1993). Influence of complex structure on the biodegradation of iron-citrate complexes. Appl. Environ. Microbiol., 59, pp 109-113.

    CAS  Google Scholar 

  • Fürst, P. and Burggräf, H. (2000). Das Bio-Substrat Verfahren firmenbericht Dr. Fürst systems.

    Google Scholar 

  • Geets, J., Borremans, B., Vangronsveld, J., Diels, L. and van der Lelie, D. (2004). Molecular monitoring of SRB community structure and dynamics in batch experiments to examine the applicability of in situ precipitation of heavy metals for groundwater remediation. J. Soil Science, p 1-15 (OnlineFirst), Ecomed Publishers (Landsberg, Germany).

    Google Scholar 

  • Ghyoot, W., Feyaerts, K., Diels, L., Vanbroekhoven, K., de Clerck, X., Gevaerts, G., Ten Brummeler, E. and van den Broek, P. (2004). In situ bioprecipitation for remediation of metal-contaminated groundwater. Edited by W. Verstraete, Published by Elsevier. In: European Symposium on Environmental Biotechnology, ESEB 2004. p 241-244. ISBN 90 5809 653 X.

    Google Scholar 

  • Gilbert, O., de Pablo, J., Cortina, J. L. and Ayora, C. (2002). Treatment of acid mine drainage by sulfate-reducing bacteria using permeable reactive barriers: a review from laboratory to full-scale experiments. Reviews in Environmental Science and Biotechnology, 1, pp 327-333.

    Article  Google Scholar 

  • Greben, H. A., Maree, J. P., Singmin, I. and Mnqanqeni, S. (2000). Biological sulphate removal from acid mine effluent using ethanol as carbon and energy source. Water Sci. Technol., 42, pp 339-344.

    CAS  Google Scholar 

  • Grimault, J. O., Ferer, M. and Macpherson, E. (1999). The mine tailing accident in Aznacollar. The Science of the Total Environment, 242, pp 3-11.

    Article  Google Scholar 

  • Groudev, S., Georgiev, P. S., Spasova, I. I., Nicolova, M. V. and Diels, L. (2004). Bioremediation of acid drainage by means of a passive treatment system. The 20th Annual International Conference on Soils, Sediments and Water, Amherst (USA), October 18-21.

    Google Scholar 

  • Groudev, S. N., Nicolova, M. V., Spasova, I. I., Groudeva, V. I., Georgiev, P. S. and Diels, L. (2005a). Bioremediation of acid drainage by means of a passive treatment system. Proceedings of 16th International Biohydrometallurgy Symposium, Cape Town, 25-29  September, pp 473-478 (CD-rom version), ISBN 1-920051-17-1, Comgress (Cape Town, South Africa).

    Google Scholar 

  • Groudev, S. N., Spasova, I. I., Georgiev, P. S. and Nicolova, M. V. (2005b). Bioremediation of acid drainage in a uranium deposit. The fourteenth Annual West Coast Conference on Soils, Sediments and Water, San Diego (USA), March 15-18, p 66, AEHS (USA).

    Google Scholar 

  • Hammack, R. W. and Edenborn, H. M. (1992). The removal of nickel from mine waters using bacterial sulfate reduction. Appl. Microbiol. Biotechnol., 37, pp 674-678.

    Article  CAS  Google Scholar 

  • Hao, O. L. (2000). In Environmental technologies to treat sulfur pollution: principles and engineering. Ed. Lens, P. and Hulshoff-Pol, L., IWA Publishing, London, pp 393-414.

    Google Scholar 

  • Janssen, G. M. C. M. and Temminghoff, E. J. M. (2004). In situ metal precipitation in a zinc-contaminated, aerobic sandy aquifer by means of biological sulfate reduction. Environ. Sci. Technol., 38, pp 4002-4011.

    Article  CAS  Google Scholar 

  • Johnson, B. D. and Hallberg, K. N. (2005). Acid mine drainage remediation options: a review. Science of the Total Environment, 338, pp 3-14.

    Article  CAS  Google Scholar 

  • Koenigsberg, S. S. (2002). Metals remediation compound, www.regenesis.com.

  • Koenigsberg, S. S., Sandefur, C. A., Lapus, K. A. and Pasrich, G. P. (2002). Facilitated desorption and incomplete dechlorination observations from 350 applications of HRC. www.regenesis.com.

  • Kontopoulos, A. (1988). Acid mine drainage control. In Effluent Treatment in the Mining Industry. Ed. Castro, S. H., Vergara, F. and Sánches, M. A., Concepción, pp 57-118.

    Google Scholar 

  • Mallants, D., Diels, L., Bastiaens, L., Vos, J., Moors, H., Wang, L., Maes, N. and Vandenhove, H. (2002). Removal of uranium and arsenic from groundwater using six different reactive materials: assessment of removal efficiency. Int. Conf. Uranium Mining and Hydrogeology UMH III, Freiburg, (Germany), 15-21/09/2002. Ed. Merkel, B. J., Planer-Friedrich, P., Wolkersdorfer, C. pp 565-571.

    Google Scholar 

  • Maree, J. P. and Strydom, W. W. (1987). Biological sulphate removal from industrial effluent in an upflow packed bed reactor. Water Res., 21, pp 141-146.

    Article  CAS  Google Scholar 

  • Merten, D., Kothe, E. and Büchel, G. (2004). Studies on microbial heavy metal retention from uranium mine drainage water with special emphasis on rare earth elements. Mine Water and the Environment, 23, pp 34-43.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., Yong, R. N. and Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 60, pp 193-207.

    Article  Google Scholar 

  • Munro, L. D., Clark, M. W. and McConchie, D. (2004). A Bauxsol™-based permeable reactive barrier for the treatment of acid rock drainage. Mine Water and the Environment, 23, pp 183-194.

    Article  CAS  Google Scholar 

  • Patterson, J. W. (1985). Industrial Wastewater Treatment Technology, 2nd ed. Butterworth, Boston.

    Google Scholar 

  • Powell, R. M., Puls, R. W., Hightower, S. K. and Sabatini, D. A. (1995). Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation. Environ. Sci. Technol., 29, pp 1913-1922.

    Article  CAS  Google Scholar 

  • Prasad, D., Wai, M., Berube, P. and Henry, J. G. (1999). Evaluating substrates in the biological treatment of acid mine drainage. Environ. Technol., 20, pp 449-458.

    Article  CAS  Google Scholar 

  • Pümpel, T., Ebner, C., Pernfuss, B., Schinner, F., Diels, L., Keszthelyi, Z., Macaskie, L., Tsezos, M. and Wouters, H. (2001a). Removal of nickel from plating rinsing water by a moving-bed sandfilter inoculated with metal sorbing and precipitating bacteria. Hydrometallurgy, 59, pp 383-393.

    Article  Google Scholar 

  • Pümpel, T. and Paknikar, K. (2001b). Bioremediation technologies for metal-containing wastewaters using metabolically active microorganisms. Advances in Applied Microbiology, 48, pp 135-169.

    Article  Google Scholar 

  • Saha, G. C. and Ali, M. A. (2001). Groundwater contamination in the Dhaka city from tannery industry. Journal of Civil Engineering, CE 29. No. 2. The Institution of Engineers, Bangladesh.

    Google Scholar 

  • Schmidt, E. (2002). Actief Bodembeheer de Kempen (ABdK). Raamplan Actief Bodembeheer de Kempen 2002-2004.

    Google Scholar 

  • Steketee, J. (2004). Beslissingsondersteunend systeem vastlegging van zware metalen in de verzadigde zone van de bodem. SKB-report SV-615.

    Google Scholar 

  • Temminghoff, E. and Janssen, G. (2005). PAO-cursus Natuurlijke en gestimuleerde vastlegging van zware metalen in de bodem, Delft, 8-9 March 2005.

    Google Scholar 

  • Tessier, A., Campbell, P. G. C. and Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, pp 844-851.

    Article  CAS  Google Scholar 

  • Van Houten, R. T., Hulshoff-Pol, L. W. and Lettinga, G. (1994). Biological sulfate reduction using gas-lift reactors fed with hydrogen and carbon-dioxide as energy and carbon source. Biotechnol. Bioeng., 44, pp 586-594.

    Article  CAS  Google Scholar 

  • Van Roy, S., Bastiaens, L., Vanbroekhoven, K., Dejonghe, W. and Diels, L. (2005a). Sorbent screening for in situ treatment of groundwater with heavy metals. The eighth In situ and On-site Bioremediation Symposium, June 6-9, 2005, Baltimore, E-21 (CD-rom version), ISNB 1-57477-152-3, Batelle Press (Columbus, USA).

    Google Scholar 

  • Van Roy, S., Vanbroekhoven, K. and Diels, L. (2005b). Immobilisation of heavy metals in the saturated zone by sorption and in situ bioprecipitation processes. Proceedings of the IMWA meeting in Oviedo (5-7 September). Editors Loredo, J., Pendas, F., ISBN 84-689-3415-1, pp 355-360, University of Oveido (Oveido, Spain).

    Google Scholar 

  • Vanbroekhoven, K., Geets, J., Van Roy, S. and Diels, L. (2005a). Impact of DOC on precipitation and stability of metal sulfides during evaluation of ISBP in column experiments, Proceedings of Consoil 2005, October 3-7 2005, Bordeaux (France), pp 1875-1879 (CD-rom version), ISBN 3-923704-50-x, F&U Confirm (Germany).

    Google Scholar 

  • Vanbroekhoven, K., Dejonghe, W., Nuyts, G. and Diels, L. (2005b). Feasibility study of the NA potential for mixed plumes: impact of heavy metals on halorespiration. The eighth In situ and On-site Bioremediation Symposium, June 6-9, 2005, Baltimore. Submitted.

    Google Scholar 

  • Vanbroekhoven, K., Ryngaert, A., Van Roy, S., Diels, L. and Dejonghe, W. (2006). Competitive dissimilatory iron reduction during in situ bioprecipitation of metals: Evidence by quantitative PCR using SRB and Geobacter specific primers. ESEB 2006, Leipzig, in preparation.

    Google Scholar 

  • Wagner-Döbler, I., von Canstein, H., Li, Y., Timmis, K. N. and Deckwer, W. D. (2000). Removal of Mercury from chemical wastewater by microoganisms in technical scale, Environ. Sci. Technol., Vol. 43, Issue 21, pp 4628-4634. DOI: 10.1021/es0000652.

    Article  Google Scholar 

  • Waybrant, K. R., Ptacek, C. J. and Blowes, D. W. (2002). Treatment of mine drainage using permeable reactive barriers: column experiments. Environ. Sci. Technol., 36, pp 1349-1356.

    Article  CAS  Google Scholar 

  • Webb, J. S., McGinness, S. and Lappin-Scott, H. M. (1998). Metal removal by sulfate-reducing  bacteria from natural and constructed wetlands. J. Appl. Microbiol., 84, pp 240-248.

    Article  CAS  Google Scholar 

  • Weijma, J., Copini, C. F. M., Buisman, C. J. N., and Schultz, C. E. (2002). Biological recovery of metals, sulfur and water in the mining and metallurgical industry. In Water Recycling and Recovery in Industry/Lens, P. N. L., Hulshoff-Pol, L. W., Wilderer, P., Asano, T. pp 605-622. London, UK: IWA Publishing.

    Google Scholar 

  • Woebking, H. and Diels, L. (2000). Abreicherung und Rückgewinnung von Eisen und  Nichteisenmetallen aus industriellen Abwässeren unter Verwendung eines Bakterien geimpften Sandfilters. Berg- und Hüttenmännische Monatshefte 7, pp 265-270.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this paper

Cite this paper

Diels, L., Vanbroekhoven, K. (2008). Remediation of Metal and Metalloid Contaminated Groundwater. In: Annable, M.D., Teodorescu, M., Hlavinek, P., Diels, L. (eds) Methods and Techniques for Cleaning-up Contaminated Sites. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6875-1_1

Download citation

Publish with us

Policies and ethics