Skip to main content

Sulfide Oxidation from Cyanobacteria to Humans: Sulfide–Quinone Oxidoreductase (SQR)

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 27))

After the discovery that anoxygenic, sulfidotrophic photosynthesis can be induced in cyanobacteria, sulfide- quinone reductase (SQR) was identified and characterized in Oscillatoria limnetica. This was closely followed by the study of SQR in the purple bacterium Rhodobacter capsulatus. Subsequently the genes of the purple bacterium and of two cyanobacteria, as well as of the hyperthermophilic hydrogen bacterium Aquifex aeolicus were cloned, sequenced and expressed in Escherichia coli, and the enzymes were characterized.

Sequence analysis showed that SQR belongs to the disulfide oxidoreductase flavoprotein family, together with flavocytochrome c (FCC), another sulfide oxidizing enzyme. All the members of this family are characterized by two redox active cysteines which cooperate with the flavin in the redox cycle. A redox mechanism for SQR is proposed on the basis of site directed mutations of the cysteins and of other amino acid residues. Furthermore, a 3d-structural model is derived from the crystal structure of FCC.

The search into the genomes accessible in the internet documents a widely spread occurrence of SQRgenes in bacteria. From the 19 completed canobacterial genomes, five contain the gene. Phylogenetic analysis classifies these genes into at least two clades – SQR-type I and SQR-type II. However, SQRlike enzymes are not confined to prokaryotes. They occur in the mitochondria of some fungi, as well as of all animals for which the genomes have been sequenced. From these eukarytotic SQR-like proteins (SQRDL) only the one of fission yeast was isolated and was enzymatically characterized. It is involved in heavy metal tolerance, and has therefore been denoted HMT2. Since sulfide has been indentified as a gaseous transmitter substance in animals, a possible role for SQRDL signalling is considered.

Finally, phylogenetic scenarious for the descent of SQR from a common ancestor are discussed. Two observations are of special interest: (i) The mitochondrial SQRDL is of type II, although the endosymbiontic ancestor of mitochondria is considered to be a proteobacterium, which should have had a type I-SQR. (ii) The two essential cysteines among the flavoprotein family must have changed positions in the primary structure during evolution, thus constituting an example of functional plasticity within phylogenies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anbar AD and Knoll AH (2002) Proterozoic ocean chemistry and evolution: A bioinorganic bridge. Science 297: 1137–1142

    Article  PubMed  CAS  Google Scholar 

  • Arieli B, Padan E and Shahak Y (1991) Sulfide induced sulfide–quinone reductase activity in thylakoids of Oscillatoria limnetica. J Biol Chem 266: 104–111

    PubMed  CAS  Google Scholar 

  • Arieli B, Shahak Y, Taglicht D, Hauska G and Padan E (1994) Purification and characterization of sulfide–quinone reductase (SQR), a novel enzyme driving anoxygenic photosynthesis in Oscillatoria limnetica. J Biol Chem 269: 5705–5711

    PubMed  CAS  Google Scholar 

  • Belkin S and Padan E (1978) Sulfide dependent hydrogen evolution in the cyanobacterium Oscillatoria limnetica. FEBS Lett 94: 291–294

    Article  CAS  Google Scholar 

  • Belkin S, Arieli B and Padan E (1982) Sulfide dependent electron transport in Oscillatoria limnetica. Isr J Botany 31: 199–200

    CAS  Google Scholar 

  • Belkin S, Shahak Y and Padan E (1988) Anoxygenic photosynthetic electron transport. Meth Enzymol 167: 380–386

    Article  CAS  Google Scholar 

  • Berks BC (1996) A common export pathway for proteins baring complex redox factors. Mol Microbiol 22: 393–404

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE, Madigan MT and Bauer CE (1995) Anoxygenic Photosynthetic Bacteria, Vol 2 of Advances in Photosynthesis (Govindjee ed) Kluwer Academic (now Springer), Dordrecht, Boston, London

    Google Scholar 

  • Boehning D and Snyder SH (2003) Novel neural modulators. Annu Rev Neurosci 26: 105–131

    Article  PubMed  CAS  Google Scholar 

  • Bronstein M, Schütz M, Hauska G, Padan E and Shahak Y (2000) Cyanobacterial sulfide–quinone reductase: Cloning and heterologous expression. J Bacteriol 182: 3336–3344

    Article  PubMed  CAS  Google Scholar 

  • Brune DC (1995) Sulfur compounds as photosynthetic electron donors. In: Blankenship R, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, Vol II, pp 847–870. Advances in Photosynthesis (Govindjee ed). Kluwer Academic (now Springer), Dordrecht, Boston, London

    Google Scholar 

  • Brune DC and Trüper HG (1986) Noncyclic electron transport in chromatophores of photolithotrophically grown Rhodobacter sulfidophilus. Arch Microbiol 145: 295–301

    Article  CAS  Google Scholar 

  • Castenholtz RW (1977) The effect of sulfide on the blue-green algae of hot springs II. Yellowstone National Park. Microb Ecol 3: 79–105

    Article  Google Scholar 

  • Chen ZW, Koh M, Van Driesche G, Van Beeumen JJ, Bartsch RG, Meyer TE, Cusanovich MA and Mathews FS (1994) The structure of flavocytochrome c from a purple phototrophic bacterium. Science 266: 430–432

    Article  PubMed  CAS  Google Scholar 

  • Cusanovich MA, Meyer TE and Bartsch RG (1991) Flavocytochrome c. In: Müller F (ed) Chemistry and Biochemistry of Flavoenzymes, Vol II, pp377–393. CRC, Boca Raton, FL

    Google Scholar 

  • Fedorov R, Schlichting I, Hartmann E, Domaratcheva T, Fuhrmann M and Hegemann P (2003) Crystal structures and molecular mechanism of a light-induced signalling switch: The Phot-LOV1 domain from Chlamydomonas reinhardtii. Biophysics J 84: 501–508

    Article  Google Scholar 

  • Fenchel TM and Riedl RJ (1970) The sulfide system: a new biotic community underneath the oxidized layer of marine sandy bottoms. Mar Biol 7: 255–268

    Article  CAS  Google Scholar 

  • Friedrich CG (1998) Physiology and genetics of bacterial sulphur oxidation. In: Poole RK (ed) Advances in Microbial Physiology, pp 236–289. Academic, London

    Google Scholar 

  • Furne J, Springfield J, Koenig T, DeMaster E and Levitt MD (2001) Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: a specialized function of the colonic mucosa. Biochem Pharmacol 62: 255–259

    Article  PubMed  CAS  Google Scholar 

  • Gantt E (1994) Supramolecular membrane organization. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, Vol 1, pp 119–138. Advances in Photosynthesis (Govindjee ed.). Kluwer Academic (now Springer), Dordrecht, Boston, London

    Chapter  Google Scholar 

  • Garlick S, Oren A and Padan E (1977) Occurrence of facultative anoxygenic photosynthesis among filamentous unicellular cyanobacteria. J Bacteriol 129: 623–629

    PubMed  CAS  Google Scholar 

  • Goubern M, Andriamihaja M, Nübel T, Blachier F and Bouillaud F (2007) Sulfide, the first inorganic substrate for human cells. FASEB J 21: 1699–1706

    Article  PubMed  CAS  Google Scholar 

  • Griesbeck C (2001) Sulfid-Chinon Reduktase (SQR) aus Rhodobacter capsulatus: Physikochemische Charakterisierung und Studien zum katalytischen Mechanismus. Thesis, Universität Regensburg, Germany

    Google Scholar 

  • Griesbeck C, Hauska G and Schütz M (2000) Biological sulfide oxidation: Sulfide–quinone reductase (SQR), the primary reaction. In: Pandalai SG (ed) Recent Research Development in Microbiology, Vol 4, pp 179–203. Research Signpost, Trivandrum, India

    Google Scholar 

  • Griesbeck C, Schütz M, Schödl T, Bathe S, Nausch L, Mederer N, Vielreicher M and Hauska G (2002) Mechanism of sulfide–quinone reductase investigated using site-directed mutagenesis and sulphur analysis. Biochemistry 41: 11552–11565

    Article  PubMed  CAS  Google Scholar 

  • Grieshaber MK and Völkel S (1998) Animal adaptations for tolerance and exploitation of poisonous sulfide. Annu Rev Physiol 60: 33–53

    Article  PubMed  CAS  Google Scholar 

  • Hansen TA and Van Gemerden (1972) Sulfide utilization by purple non-sulfur bacteria. Arch Microbiol 86: 49–56

    CAS  Google Scholar 

  • Hopkins N and Williams CH (1995) Characterization of lipoamide dehydrogenase from Escherichia coli lacking the redox active disulfide: C44S and C49S. Biochemistry 34: 11757–11765

    Article  PubMed  CAS  Google Scholar 

  • Huson DH and Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23: 254–267

    Article  PubMed  CAS  Google Scholar 

  • Kusai A and Yamanaka T (1973) The oxidation mechanism of thiosulphate and sulphide in Chlorobium thiosulfatophilum: Roles of cytochromes c-551 and c-553. Biochim Biophys Acta 325: 304–314

    Article  PubMed  CAS  Google Scholar 

  • Mattevi A, Obmolova G, Sokatch JR, Betzel C and Hol WG (1992) The refined crystal structure of Pseudomonas putida lipoamide dehydrogenase complexed with NAD+ at 2.45 Å resolution. Proteins 13: 336–351

    Article  PubMed  CAS  Google Scholar 

  • Mühlenhoff U and Lill R (2000) Biogenesis of iron sulfur proteins in eukaryotes: A novel task of mitochondria that is inherited from bacteria. Biochim Biophys Acta 1459: 370–382

    Article  PubMed  Google Scholar 

  • Notredame C, Higgins D and Heringa J (2000) T-Coffee: a novel method for multiple sequence alignments. J Mol Biol 302: 205–217

    Article  PubMed  CAS  Google Scholar 

  • Nübel T, Klughammer C, Huber R, Hauska G and Schütz M (2000) Sulfide–quinone oxidoreductase in membranes of the hyperthermophilic bacterium Aquifex aeolicus (VF5). Arch Microbiol 173: 233–244

    Article  PubMed  Google Scholar 

  • Padan E (1979) Facultative anoxygenic photosynthesis in cyanobacteria. Annu Rev Plant Physiol 30: 27–40

    Article  CAS  Google Scholar 

  • Padan E (1989) Combined molecular and physiological approach to anoxygenic photosynthesis in cyanobacteria. In: Cohen Y and Rosenberg E (eds.) Microbial Mats: Physiological Ecology and Benthic Microbial Communities, pp 277–282. American Society of Microbiology, Washington, DC

    Google Scholar 

  • Parrino V, Kraus DW and Doeller JE (2000) ATP production from the oxidation of sulfide in gill mitochondria of the ribbed mussel Geukensia demissa. J Exp Biol 203: 2209–2218

    PubMed  CAS  Google Scholar 

  • Reinartz M, Tschäpe T, Brüser T, Trüper HG and Dahl C (1998) Sulfide oxidation in the phototrophic bacterium Chromatium vinosum. Arch Microbiol 170: 59–68

    Article  PubMed  CAS  Google Scholar 

  • Rich P and Fisher N (1999) Quinone-binding sites in membrane proteins: Structure, function and applied aspects. Biochem Soc Trans 27: 561–565

    PubMed  CAS  Google Scholar 

  • Schödl T (2003) Sulfid-Chinon Reduktase (SQR) aus Aquifex aeolicus: Gensynthese, Expression, Reinigung und biochemische Charakterisierung. Thesis, Universität Regensburg, Germany

    Google Scholar 

  • Schütz M, Shahak Y, Padan E and Hauska G (1997) Sulfide–quinone reductase from Rhodobacter capsulatus – purification, cloning and expression. J Biol Chem 272: 9890–9894

    Article  PubMed  Google Scholar 

  • Schütz M, Klughammer C, Griesbeck C, Quentmeier A, Friedrich CG and Hauska G (1998) Sulfide–quinone reductase activity in membranes of the chemotrophic bacterium Paracoccus denitrificans. Arch Microbiol 170: 353–360

    Article  Google Scholar 

  • Schütz M, Maldener I, Griesbeck C and Hauska G (1999) Sulfide–quinone reductase from Rhodobacter capsulatus: requirement for growth, periplasmic localization and extension of sequence analysis. J Bacteriol 181: 6516–6523

    PubMed  Google Scholar 

  • Shahak Y, Arieli B, Binder B and Padan E (1987) Sulfide-dependent photosynthetic electron flow coupled to proton translocation in thylakoids of the cyanobacterium Oscillatoria limnetica. Arch Biochem Biophys 259: 605–615

    Article  PubMed  CAS  Google Scholar 

  • Shahak Y, Hauska G, Herrmann I, Arieli B, Taglicht D and Padan E (1992a) Sulfide–quinone reductase (SQR) drives anoxygenic photosynthesis in prokaryotes. In: Murata N (ed) Research in Photosynthesis, Vol II, pp 483–486. Kluwer Academic, The Netherlands

    Google Scholar 

  • Shahak Y, Arieli B, Padan E and Hauska G (1992b) Sulfide quinone reductase (SQR) activity in Chlorobium. FEBS Lett 299: 127–130

    Article  PubMed  CAS  Google Scholar 

  • Shahak Y, Arieli B, Hauska G, Herrmann I and Padan E (1993) Isolation of sulfide–quinone reductase (SQR) from prokaryotes. Phyton 32: 133–137

    Google Scholar 

  • Shahak Y, Schütz M, Bronstein M, Griesbeck C, Hauska G and Padan E (1999) Sulfide-dependent anoxygenic photosynthesis in prokaryotes – sulfide–quinone reductase (SQR), the initial step. In: Peschek GA, Löffelhardt WL and Schmetterer G (eds) The Phototrophic Prokaryotes, pp 217–228. Kluwer Academic/Plenum, New York

    Google Scholar 

  • Shen Y, Buick R and Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410: 77–81

    Article  PubMed  CAS  Google Scholar 

  • Teodorescu O, Galor T, Pillardy J and Elber R (2004) Enriching the sequence substitution matrix by structural information. Protein Structure Function Genet 54: 41–48

    Article  CAS  Google Scholar 

  • Thauer RK, Jungermann K and Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100–180

    PubMed  CAS  Google Scholar 

  • Theissen U, Hoffmeister M, Grieshaber M and Martin W (2003) Single eubacterial origin of eukaryotic sulfide:quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eukaryotes during anoxic and sulfidic times. Mol Biol Evol 20: 1564–1574

    Article  PubMed  CAS  Google Scholar 

  • Todd AE, Orengo CA and Thornton JM (2002) Plasticity of enzyme active sites. Trends Biochem Sci 27: 419–426

    Article  PubMed  CAS  Google Scholar 

  • Vande Weghe JG and Ow DW (1999) A fission yeast gene for mitochondrial sulfide oxidation. J Biol Chem 274: 13250–13257

    Article  Google Scholar 

  • Vande Weghe JG and Ow DW (2001) Accumulation of metal-binding peptides in fission yeast requires hmt2+. Mol Microbiol 42: 29–36

    Article  Google Scholar 

  • Von Heijne G, Steppuhn J and Herrman R (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180: 535–545

    Article  PubMed  CAS  Google Scholar 

  • Wang R (2002) Two’s a company, three’s a crowd: can H2S be the third endogenous gasotransmitter? FASEB J 16: 1792–1798

    Article  PubMed  CAS  Google Scholar 

  • Wieringa RK, Terpstra P and Hol WGJ (1986) Prediction of the occurrence of the ADP-binding aaa-fold in proteins, using an amino acid finger print. J Mol Biol 187: 101–107

    Article  Google Scholar 

  • Williams CH (1992) Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase and mercuric ion reductase: a familiy of flavoenzyme transhydrogenases. In: Müller F (ed) Chemistry and Biochemistry of Flavoenzymes, Vol III, pp 121–211. CRC, Boca Raton, FL

    Google Scholar 

  • Yong R and Searcy DG (2001) Sulfide oxidation coupled to ATP synthesis in chicken liver mitochondria. Comp Biochem Physiol Part B: Biochem Mol Biol 129: 129–137

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Shahak, Y., Hauska, G. (2008). Sulfide Oxidation from Cyanobacteria to Humans: Sulfide–Quinone Oxidoreductase (SQR). In: Hell, R., Dahl, C., Knaff, D., Leustek, T. (eds) Sulfur Metabolism in Phototrophic Organisms. Advances in Photosynthesis and Respiration, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6863-8_16

Download citation

Publish with us

Policies and ethics