Skip to main content

Introduction to Sulfur Metabolism in Phototrophic Organisms

  • Chapter
Sulfur Metabolism in Phototrophic Organisms

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 27))

Sulfur is one of the most versatile elements in life due to its reactivity in different oxidation and reduction states. In phototrophic organisms, the redox properties of sulfur in proteins and of sulfur-containing metabolites are particularly important for the mediation between the reductive assimilation processes of photosynthesis and reactive oxygen species that arise as by-products of electron transport chains in chloroplasts and mitochondria. Further, reduced sulfur compounds play a prominent role as electron donors for photosynthetic carbon dioxide fixation in anoxygenic phototrophic sulfur bacteria. The assimilatory process is part of the biological sulfur cycle that is completed by dissimilation of reduced sulfur compounds. In contrast to the assimilatory provision of sulfur-containing cell constituents that is found in most taxonomic groups, dissimilation is restricted to prokaryotes and serves energy-yielding processes where sulfur compounds are donors or acceptors of electrons. Interest in the investigation of the multiple functions of sulfur-related processes has exponentially increased in recent years, especially in molecular and cellular biology, biochemistry, agrobiotechnology and ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams WR and Schiff JA (1973) Studies on sulfate utilization by algae. 11. An enzyme-bound intermediate in the reduction of adenosine-5′-phosphosulfate (APS) by cell-free extracts of wild-type Chlorella and mutants blocked for sulfate reduction. Arch Microbiol 94: 1–10

    CAS  Google Scholar 

  • Abrol YP and Ahmad A (2005) Sulphur in Plants. Kluwer Academic Publishers, London

    Google Scholar 

  • Barbosa-Jefferson VL, Zhao FJ, Mcgrath SP and Magan N (1998) Thiosulphate and tetrathionate oxidation in arable soils. Soil Biol Biochem 30: 553–559

    Article  CAS  Google Scholar 

  • Barrett EL and Clark MA (1987) Tetrathionate reduction and production of hydrogen sulfide from thiosulfate. Microbiol Rev 51: 192–205

    PubMed  CAS  Google Scholar 

  • Bavendamm W (1924) Die farblosen und roten Schwefelbakterien des Süß- und Salzwassers. In: Kolkwitz R (ed) Pflanzenforschung (2), pp 1–156. Verlag G. Fischer, Jena

    Google Scholar 

  • Beer-Romero P and Gest H (1987) Heliobacillus mobilis, a peritrichously flagellated anoxyphototroph containing bacteriochlorophyll g. FEMS Microbiol Lett 41: 109–114

    Article  CAS  Google Scholar 

  • Beinert H (2000) A tribute to sulfur. Eur J Biochem 267: 5657–5664

    Article  PubMed  CAS  Google Scholar 

  • Berendt U, Haverkamp T and Schwenn JD (1995) Reaction mechanism of thioredoxin: 3′-phospho-adenylylsulfate reductase investigated by site-directed mutagenesis. Eur J Biochem 233: 347–356

    Article  PubMed  CAS  Google Scholar 

  • Berndt C, Lillig CH, Wollenberg M, Bill E, Mansilla MC, de Mendoza D, Seidler A and Schwenn JD (2004) Characterization and reconstitution of a 4Fe–4S adenylyl sulfate/phosphoadenylyl sulfate reductase from Bacillus subtilis. J Biol Chem 279: 7850–7855

    Article  PubMed  CAS  Google Scholar 

  • Bick JA, Aslund F, Chen YC and Leustek T (1998) Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5′-adenylylsulfate reductase. Proc Natl Acad Sci USA 95: 8404–8409

    Article  PubMed  CAS  Google Scholar 

  • Bick JA, Dennis JJ, Zylstra GJ, Nowack J and Leustek T (2000) Identification of a new class of 5′-adenylylsulfate (APS) reductases from sulfate-assimilating bacteria. J Bacteriol 182: 135–142

    Article  PubMed  CAS  Google Scholar 

  • Brown KA (1982) Sulfur in the environment: a review. Environ Pollut 3B: 47–80

    Google Scholar 

  • Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975: 189–221

    Article  PubMed  CAS  Google Scholar 

  • Brune DC (1995) Sulfur compounds as photosynthetic electron donors. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, (Advances in Photosynthesis, Vol.2) pp 847–870. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Brunold C and Schiff JA (1976) Studies of sulfate utilization by algae. 15. Enzymes of assimilatory sulfate reduction in Euglena and their cellular localization. Plant Physiol 57: 430–436

    Article  PubMed  CAS  Google Scholar 

  • Brüser T, Lens P and Trüper HG (2000) The biological sulfur cycle. In: Lens P and Pol LH (eds) Environmental Technologies to Treat Sulfur Pollution, pp 47–86. IWA Publishing, London

    Google Scholar 

  • Bryantseva IA, Gorlenko VM, Kompantseva EI, Tourova TP, Kuznetsov B and Osipov GA (2000) Alkaliphilic heliobacterium Heliorestis baculata sp. nov. and emended description of the genus Heliorestis. Arch Microbiol 174: 283–291

    Article  PubMed  CAS  Google Scholar 

  • Buder J (1915) Zur Kenntnis des Thiospirillum jenense und seine Reaktionen auf Lichtreize. Jahrb f wiss Bot 56: 529–584

    Google Scholar 

  • Buder J (1919) Zur Biologie des Bakteriopurpurins und der Purpurbakterien. Jahrb f wiss Bot 58: 525–628

    CAS  Google Scholar 

  • Bunker HJ (1936) A Review of the Physiology and Biochemistry of the Sulfur Bacteria. HM Stationery Office, London

    Google Scholar 

  • Cohen Y, Padan E and Shilo M (1975) Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J Bacteriol 123: 855–861

    PubMed  CAS  Google Scholar 

  • Cohn F (1875) Untersuchungen über Bakterien II. Beitr z Biol d Pflanzen 1: 141–207

    Google Scholar 

  • Cooper RM, Resende MLV, Flood J, Rowan MG, Beale MH and Potter U (1996) Detection and cellular localization of elemental sulphur in disease-resistant genotypes of Theobroma cacao. Nature 379: 159–162

    Article  CAS  Google Scholar 

  • Cooper RM and Williams JS (2004) Elemental sulphur as an induced antifungal substance in plant defence. J Exp Bot 55: 1947–1953

    Article  PubMed  CAS  Google Scholar 

  • Dahl C and Friedrich CG (2007) Microbial Sulfur Metabolism. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Dahl C and Prange A (2006) Bacterial sulfur globules: occurrence, structure and metabolism. In: Shively JM (ed) Inclusions in Prokaryotes, pp 21–51. Springer, Heidelberg

    Chapter  Google Scholar 

  • Dahl C, Prange A and Steudel R (2002) Natural polymeric sulfur compounds. In: Steinbüchel A (ed) Miscellaneous Biopolymers and Biodegradation of Synthetic Polymers, pp 35–62. Wiley-VCH, Weinheim

    Google Scholar 

  • De Kok LJ and Schnug E (2005) Proceedings of the 1st Sino-German workshop on aspects of sulfur nutrition in plants. Landbauforschung Völkenrode–FAL Agricult Res special issue No 283

    Google Scholar 

  • de Wit R and van Gemerden H (1987) Oxidation of sulfide to thiosulfate by Microcoleus chtonoplastes. FEMS Microbiol Ecol 45: 7–13

    Article  Google Scholar 

  • Denger K, Laue H and Cook AM (1997) Thiosulfate as a metabolic product: the bacterial fermentation of taurine. Arch Microbiol 168: 297–301

    Article  PubMed  CAS  Google Scholar 

  • Dick WA (1992) Sulfur cycle. In: Lederberg J (ed) Encyclopedia of Microbiology, pp 123–133. Academic, San Diego

    Google Scholar 

  • Ehrenberg CG (1838) Die Infusionsthierchen als vollkommene Organismen. Ein Blick in das tiefere organische Leben der Natur. Leopold Voss-Verlag, Leipzig

    Google Scholar 

  • Engelmann TW (1882) Ueber Licht- und Farbenperception niederster Organismen. E Pflüger Arch f Physiol 29: 387–400

    Article  Google Scholar 

  • Falbe J and Regitz M (1995) Römpp Chemie Lexikon, 9th edn. Thieme, Stuttgart

    Google Scholar 

  • Falkowski PG (2006) Evolution: tracing oxygen’s imprint on Earth’s metabolic evolution. Science 311: 1724–1725

    Article  PubMed  CAS  Google Scholar 

  • Friedrich CG (1998) Physiology and genetics of sulfur-oxidizing bacteria. Adv Microb Physiol 39: 235–289

    Article  PubMed  CAS  Google Scholar 

  • Friedrich CG, Bardischewsky F, Rother D, Quentmeier A and Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8: 253–259

    Article  PubMed  CAS  Google Scholar 

  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A and Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67: 2873–2882

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Schofield OME and Leustek T (2000) Characterization of sulfate assimilation in marine algae focusing on the enzyme 5′-adenylylsulfate reductase. Plant Physiol 123: 1087–1096

    Article  PubMed  CAS  Google Scholar 

  • Giordano M, Norici A and Hell R (2005) Sulfur and phytoplankton: acquisition, metabolism and impact on the environment. New Phytologist 166: 371–382

    Article  PubMed  CAS  Google Scholar 

  • Grieshaber MK and Völkel S (1998) Animal adaptations for tolerance and exploitation of poisonous sulfide. Ann Rev Physiol 60: 33–53

    Article  CAS  Google Scholar 

  • Gutierrez-Marcos JF, Roberts MA, Campbell EI and Wray JL (1996) Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and “APS reductase” activity. Proc Natl Acad Sci USA 93: 13377–13382

    Article  PubMed  CAS  Google Scholar 

  • Harborne JB (1988) Introduction to Ecological Biochemistry. Academic, London

    Google Scholar 

  • Haverkamp T and Schwenn JD (1999) Structure and function of a cysBJIH gene cluster in the purple sulfur bacterium Thiocapsa roseopersicina. Microbiology 145: 115–125

    Article  PubMed  CAS  Google Scholar 

  • Hawkesford M (2004) Sulphur metabolism in plants. J Exp Bot 55: (404) special issue

    Google Scholar 

  • Hawkesford M and De Kok LJ (2007) Sulfur in Plants. An Ecological Perspective. Springer, London

    Book  Google Scholar 

  • Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Fouts D, Haft DH, Selengut J, Peterson JD, Davidsen TM, Zafar N, Zhou L, Radune D, Dimitrov G, Hance M, Tran K, Khouri H, Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G and Fraser CM (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22: 554–559

    Article  PubMed  CAS  Google Scholar 

  • Hell R (1997) Molecular physiology of plant sulfur metabolism. Planta 202: 138–148

    Article  PubMed  CAS  Google Scholar 

  • Hell R and Kruse C (2007) Sulfur in biotic interactions of plants. In: Hawkesford M and De Kok LJ (eds) Sulfur in Plants. An Ecological Perspective, pp 197–224. Springer, London

    Chapter  Google Scholar 

  • Hell R and Leustek T (2005) Sulfur metabolism in plants and algae–a case study for an integrative scientific approach. Photosyn Res 86: 297–298

    Article  PubMed  CAS  Google Scholar 

  • Hesse H and Hoefgen R (2003) Molecular aspects of methionine biosynthesis. Trends Plant Sci 8: 259–262

    Article  PubMed  CAS  Google Scholar 

  • Houba VJG and Uittenbogaard J (1994) Chemical Composition of Various Plant Species. Wageningen University, The Netherlands

    Google Scholar 

  • Imai S, Tsuge N, Tomotake M, Nagatome Y, Sawada H, Nagata T and Kumagai H (2002) An onion enzyme that makes the eyes water–A flavoursome, user-friendly bulb would give no cause for tears when chopped up. Nature 419: 685

    Article  PubMed  CAS  Google Scholar 

  • Kanno N, Nagahisa E, Sato M and Sato Y (1996) Adenosine 5′-phosphosulfate sulfotransferase from the marine macroalga Porphyra yezoensis Ueda (Rhodophyta): Stabilization, purification, and properties. Planta 198: 440–446

    Article  CAS  Google Scholar 

  • Kelly DP and Smith NA (1990) Organic sulfur compounds in the environment. Adv Microb Ecol 11: 345–385

    CAS  Google Scholar 

  • Kim SO, Merchant K, Nudelman R, Beyer WF, Keng T, DeAngelo J, Hausladen A and Stamler JS (2002) OxyR: a molecular code for redox-related signaling. Cell 109: 383–396

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Fritzemeier K, Wiedemann G and Reski R (2007) The putative moss 3′-phosphoadenosine phosphosulfate reductase is a novel form of adenosine 5′-phosphosulfate reductase without iron sulfur cluster. J Biol Chem 282: 22930–22938

    Article  PubMed  CAS  Google Scholar 

  • Kredich NM (1987) Biosynthesis of cysteine. In: Neidhardt FC, Ingraham TL, Low KB, Magasanik B, Schaechter M and Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp 419–428. American Society of Microbiology, Washington, DC

    Google Scholar 

  • Lens PNL and Kuenen JG (2001) The biological sulfur cycle: novel opportunities for environmental biotechnology. Water Sci Technol 44: 57–66

    PubMed  CAS  Google Scholar 

  • Leustek T, Martin MN, Bick JA and Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51: 141–165

    Article  PubMed  CAS  Google Scholar 

  • Li J and Schiff JA (1991) Purification and properties of adenosine 5′-phophosulfate sulfotransferase from Euglena. Biochem J 274: 355–360

    PubMed  CAS  Google Scholar 

  • Luther GW, Church TM, Scudlark JR and Cosman M (1986) Inorganic and organic sulfur cycling in salt-marsh pore waters. Science 232: 746–749

    Article  PubMed  CAS  Google Scholar 

  • Madigan MT and Ormerod JG (1995) Taxonomy, physiology and ecology of heliobacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, (In Advances in Photosynthesis, Vol. 2) pp 17–30. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Matias PM, Pereira IAC, Soares CM and Carrondo MA (2005) Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Prog Biophys Molec Biol 89: 292–329

    Article  CAS  Google Scholar 

  • Middelburg J (2000) The geochemical sulfur cycle. In: Lens P and Hulshoff Pol W (eds) Environmental Technologies to Treat Sulfur Pollution, pp 33–46. IWA Publishing, London

    Google Scholar 

  • Mitchell SC (1996) Biological Interactions of Sulfur Compounds. Taylor and Francis, London

    Google Scholar 

  • Mothes K and Specht W (1934) Über den Schwefeltoffwechsel der Pflanzen. Planta 22: 800–803

    Article  CAS  Google Scholar 

  • Müller A and Krebs B (1984) Sulfur – Its Significance for Chemistry, for the Geo-, Bio- and Cosmosphere and Technology. Elsevier, Amsterdam

    Google Scholar 

  • Müller C (1870) Chemisch-Physikalische Beschreibung der Thermen von Baden in der Schweiz (Canton Aargau). Zehnder, Baden

    Google Scholar 

  • Müller OF (1786) Animalcula Infusoria Fluviatilia Et Marina, Quae Detexit, Systematice Descripsit Et Ad Vivum Delineari Curavit. Mölleri, Hauniae

    Google Scholar 

  • Nadson GA (1906) The morphology of the lower algae. III Chlorobium limicola Nads., the green chlorophyll bearing microbe (in Russian). Bull Jard Bot St Petersb 6: 190–194

    Google Scholar 

  • Nelson DC and Fisher CR (1995) Chemoautotrophic and methanoautotrophic endosymbiontic bacteria at deep-sea vents and seeps. In: Karl DM (ed) Deep-Sea Hydrothermal Vents, pp 125–167. CRC Press, Boca Raton, FL

    Google Scholar 

  • Neumann S, Wynen A, Trüper HG and Dahl C (2000) Characterization of the cys gene locus from Allochromatium vinosum indicates an unusual sulfate assimilation pathway. Mol Biol Reports 27: 27–33

    Article  CAS  Google Scholar 

  • Norici A, Hell R and Giordano M (2005) Sulfur and primary production in aquatic environments: an ecological perspective. Photosyn Res 86: 409–417

    Article  PubMed  CAS  Google Scholar 

  • Perty M (1852) Zur Kenntnis kleinster Lebensformen nach Bau, Funktionen, Systematik, mit Spezialverzeichnis der in der Schweiz Beobachteten. Jent und Reinert, Bern

    Google Scholar 

  • Philips D and Philips SL (2000) High temperature dissociation constants of HS and the standard thermodynamic values for S2−. J Chem Eng Data 45: 981–987

    Article  CAS  Google Scholar 

  • Postgate JR (1968) The sulphur cycle. In: Nickless G (ed) Inorganic Sulphur Chemistry, pp 259–279. Elsevier, Amsterdam

    Google Scholar 

  • Prange A, Chauvistré R, Modrow H, Hormes J, Trüper HG and Dahl C (2002) Quantitative speciation of sulfur in bacterial sulfur globules: X-ray absorption spectroscopy reveals at least three different speciations of sulfur. Microbiology 148: 267–276

    PubMed  CAS  Google Scholar 

  • Rabenstein A, Rethmeier J and Fischer U (1995) Sulphite as intermediate sulphur compound in anaerobic sulphide oxidation to thiosulphate by marine cyanobacteria. Z Naturforsch 50c: 769–774

    Google Scholar 

  • Rausch T and Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10: 503–509

    Article  PubMed  CAS  Google Scholar 

  • Roche P, Debelle F, Maillet F, Lerouge P, Faucher C, Truchet G, Denarie J and Prome JC (1991) Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 67: 1131–1143

    Article  PubMed  CAS  Google Scholar 

  • Roy AB and Trudinger PA (1970) The Biochemistry of Inorganic Compounds of Sulfur. Cambridge University Press, London

    Google Scholar 

  • Saito K, De Kok LJ, Stulen I, Hawkesford MJ, Schnug E and Sirko A (2005) Sulfur Transport and Assimilation in the Postgenomic Era. Backhuys Publishers, Leiden

    Google Scholar 

  • Schippers A and Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65: 319–321

    PubMed  CAS  Google Scholar 

  • Schmidt A (1973) Sulfate reduction in a cell-free system of Chlorella. The ferredoxin-dependent reduction of a protein-bound intermediate by a thiosulfonate reductase. Arch Microbiol 93: 29–52

    CAS  Google Scholar 

  • Schmidt A and Jäger K (1992) Open questions about sulfur metabolism in plants. Annu Rev Plant Physiol Plant Mol Biol 43: 325–349

    Article  CAS  Google Scholar 

  • Schnug E (1998) Sulfur in Agroecosystems. Series: Nutrients in Ecosystems, Vol. 2. Springer, New York

    Google Scholar 

  • Schwenn JD (1989) Sulphate assimilation in higher plants–a thioredoxin-dependent PAPS-reductase from spinach leaves. Z Naturforsch C 42: 93–102

    Google Scholar 

  • Setya A, Murillo M and Leustek T (1996) Sulfate reduction in higher plants: Molecular evidence for a novel 5′-adenylylsulfate reductase. Proc Natl Acad Sci USA 93: 13383–13388

    Article  PubMed  CAS  Google Scholar 

  • Stetter KO (1996) Hyperthermophilic prokaryotes. FEMS Microbiol Rev 18: 149–158

    Article  CAS  Google Scholar 

  • Steudel R (1982) Homocyclic sulfur molecules. Topics Curr Chem 102: 149–176

    CAS  Google Scholar 

  • Steudel R (1985) Neue Entwicklungen in der Chemie des Schwefels und des Selens. Nova Acta Leopoldina 264: 231–246

    Google Scholar 

  • Steudel R (1987) Sulfur homocycles. In: Haiduc I and Sowerby DB (eds) The Chemistry of Inorganic Homo- and Heterocycles, pp 737–768. Academic Press, London

    Google Scholar 

  • Steudel, R (1996a) Das gelbe Element und seine erstaunliche Vielseitigkeit. Chemie in unserer Zeit 30: 226–234

    Article  CAS  Google Scholar 

  • Steudel R (1996b) Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes. Ind Eng Chem Res 35: 1417–1423

    Article  CAS  Google Scholar 

  • Steudel R (1998) Chemie der Nichtmetalle, 2nd edn. W. de Gruyter, Berlin

    Google Scholar 

  • Steudel R (2000) The chemical sulfur cycle. In: Lens P and Hulshoff Pol W (eds) Environmental Technologies to Treat Sulfur Pollution, pp 1–31. IWA Publishing, London

    Google Scholar 

  • Steudel R (2003a) Elemental Sulfur and Sulfur-Rich Compounds I. Springer, Berlin

    Google Scholar 

  • Steudel R (2003b) Elemental Sulfur and Sulfur-Rich Compounds II. Springer, Berlin

    Google Scholar 

  • Steudel R and Albertsen A (1999) The chemistry of aqueous sulfur sols – models for bacterial sulfur globules? In: Steinbüchel A (ed) Biochemical Principles and Mechanisms of Biosynthesis and Biodegradation of Polymers, pp 17–26. Wiley-VCH, Weinheim

    Google Scholar 

  • Steudel R and Eckert B (2003) Solid sulfur allotropes. In: Steudel R (ed) Elemental Sulfur and Sulfur-Rich Compounds, pp 1–79. Springer, Berlin

    Google Scholar 

  • Steudel R and Holz B (1988) Detection of reactive sulfur molecules (S6, S7, S9, Sµ), in commercial sulfur, in sulfur minerals, and in sulfur metals slowly cooled to 20 °C. Z Naturforsch B 43: 581–589

    CAS  Google Scholar 

  • Steudel R and Kustos M (1994) Organic polysulfanes. In: King RB (ed) Encyclopedia of Inorganic Chemistry, pp 4009–4038. Wiley, Sussex

    Google Scholar 

  • Steudel R, Holdt G and Nagorka R (1986) On the autoxidation of aqueous sodium polysulfide. Z Naturforsch 41b: 1519–1522

    CAS  Google Scholar 

  • Suter M, von Ballmoos P, Kopriva S, den Camp RO, Schaller J, Kuhlemeier C, Schürmann P and Brunold C (2000) Adenosine 5′-phosphosulfate sulfotransferase and adenosine 5′-phosphosulfate reductase are identical enzymes. J Biol Chem 275: 930–936

    Article  PubMed  CAS  Google Scholar 

  • Takano B and Watanuki K (1988) Quenching and liquid chromatographic determination of polythionates in natural water. Talanta 35: 847–854

    Article  PubMed  CAS  Google Scholar 

  • Trüper HG (1984a) Microorganisms and the sulfur cycle. In: Müller A and Krebs B (eds) Sulfur, Its Significance for Chemistry, for the Geo-, Bio-, and Cosmosphere and Technology, pp 351–365. Elsevier Science Publishers B.V., Amsterdam

    Google Scholar 

  • Trüper HG (1984b) Phototrophic bacteria and their sulfur metabolism. In: Müller A and Krebs B (eds) Sulfur, Its Significance for Chemistry, for the Geo-, Bio-, and Cosmosphere and Technology, pp 367–382. Elsevier Science Publishers B.V., Amsterdam

    Google Scholar 

  • Trüper HG (1989) Physiology and biochemistry of phototrophic bacteria. In: Schlegel HG and Bowien B (eds) Autotrophic Bacteria, pp 267–281. Science Tech Publishers, Madison

    Google Scholar 

  • Trüper HG and Fischer U (1982) Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis. Phil Trans R Soc Lond B 298: 529–542

    Article  Google Scholar 

  • van Niel BC (1936) On the metabolism of the Thiorho-daceae. Arch Microbiol 7: 323–358

    Google Scholar 

  • van Niel CB (1931) On the morphology and physiology of the purple and green sulfur bacteria. Arch Microbiol 3: 1–112

    Google Scholar 

  • Varin L, Chamberland H, Lafontaine JG and Richard M (1997) The enzyme involved in sulfation of the turgorin, gallic acid 4-O-(β-D-glucopyranosyl-6′-sulfate) is pulvini-localized in Mimosa pudica. Plant J 12: 831–837

    Article  PubMed  CAS  Google Scholar 

  • Warming E (1875) Om nogle ved Danmarks kyster levede bakterier. Vidensk Medd Dan Naturhist Foren Khobenhavn 20–28: 3–116

    Google Scholar 

  • Winogradsky SN (1887) Über Schwefelbakterien. Bot Ztg 45: 489–508

    Google Scholar 

  • Woese CR, Stackebrandt E, Macke TJ and Fox GE (1985) The phylogenetic definition of the major eubacterial taxa. Syst Appl Microbiol 5: 327–336

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Dahl, C., Hell, R., Leustek, T., Knaff, D. (2008). Introduction to Sulfur Metabolism in Phototrophic Organisms. In: Hell, R., Dahl, C., Knaff, D., Leustek, T. (eds) Sulfur Metabolism in Phototrophic Organisms. Advances in Photosynthesis and Respiration, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6863-8_1

Download citation

Publish with us

Policies and ethics