Skip to main content

MEMS-Based Electrodynamic Synthetic Jet Actuators for Flow Control Applications

  • Conference paper
IUTAM Symposium on Flow Control and MEMS

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 7))

Abstract

Synthetic jet actuators are used in various applications, such as separation control, mixing enhancement, and thermal management. Each of these requires the design to be optimized to meet specific performance requirements. This paper presents a design and scaling analysis of an electrodynamic synthetic jet actuator using a lumped element modeling approach. Various performance parameters, such as the resonant frequency, output volumetric flow rate and velocity, and jet formation, are studied as a function of device scale and current density. The viability and potential advantages of microscale synthetic jets are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, B.L., Glezer, A., The Formation and Evolution of Synthetic Jets, Physics of Fluids 10(9) (1998) 2281–2297.

    Article  MATH  MathSciNet  Google Scholar 

  2. Amitay, M., Smith, B.L., Glezer, A., Aerodynamic Flow Control Using Synthetic Jet Technology, in Proceedings of 36th Aerospace Sciences Meeting and Exhibit, AIAA 1998-0208 (1998).

    Google Scholar 

  3. McCormick, D., Boundary Layer Separation Control with Directed Synthetic Jets, in Proceedings of 38th Aerospace Sciences Meeting and Exhibit, AIAA 2000-0519 (2000).

    Google Scholar 

  4. Chen, Y., Liang, S., Aung, K., Glezer, A., Enhanced Mixing in a Simulated Combustor Using Synthetic Jet Actuators, in Proceedings of 37th Aerospace Sciences Meeting and Exhibit, AIAA 1999-0449 (1999).

    Google Scholar 

  5. Crook, A., Sadri, A.M., Wood, N.J., The Development and Implementation of Synthetic Jets for the Control of Separated Flow, in Proceedings of 37th Aerospace Sciences Meeting and Exhibit, AIAA 1999-3176 (1999).

    Google Scholar 

  6. Baysal, O., Koklu, M., Erbas, N., Design Optimization of Micro Synthetic Jet Actuator for Flow Separation Control, Journal of Fluids Engineering 128(5) (2006) 1053–1062.

    Article  Google Scholar 

  7. Coe, D.J., Allen, M.G., Smith, B.L., Glezer, A., Addressable Micromachined Jet Arrays, in Proceedings of 8th International Conference on Solid-State Sensors and Actuators, Vol. 2 (1995) 329–332.

    Article  Google Scholar 

  8. Parviz, B.A., Najafi, K., Muller, M., Bernal, L.P., Washabaugh, P.D., Electrostatically Driven Synthetic Microjet Arrays as a Propulsion Method for Micro Flight Part I: Principles of Operation, Modeling, and Simulation, Microsystem Technologies 11(11) (2005) 1214–1222.

    Article  Google Scholar 

  9. Lee, C., Hong, G., Ha, Q., Mallinson, S., A Piezoelectrically Actuated Micro Synthetic Jet for Active Flow Control, Sensors and Actuators: B, Chemical 108(1) (2003) 168–174.

    Article  Google Scholar 

  10. Kercher, D.S., Jeong-Bong L., Brand, O., Allen, M.G., Glezer, A., Microjet Cooling Devices for Thermal Management Of Electronics, IEEE Transactions on Components and Packaging Technologies 26(2) (2003) 359–366.

    Article  Google Scholar 

  11. Rizzetta, D., Visbal, M., Stanek, M., Numerical Investigation of Synthetic-Jet Flowfields, AIAA J. 37(8) (1999) 919–927.

    Article  Google Scholar 

  12. Yamaleev, N., Carpenter, M., Ferguson, F., Reduced-Order Model for Efficient Simulation of Synthetic Jet Actuators, AIAA J. 43(2) (2005) 357–369.

    Article  Google Scholar 

  13. Tang, H., Zhong, S., Incompressible Flow Model of Synthetic Jet Actuators, AIAA J. 44(4) (2006) 908–912.

    Article  Google Scholar 

  14. Gallas, Q., Holman, R., Nishida, T., Carroll, B., Sheplak, M., Cattafesta, L., Lumped Element Modeling of Piezoelectric-Driven Synthetic Jet Actuators, AIAA J. 41(2) (2003) 240–247.

    Article  Google Scholar 

  15. Ekinci, K.L., Roukes, M.L., Nanoelectromechanical Systems, Review of Scientific Instruments 76(6) (2005) 061101.

    Article  Google Scholar 

  16. Cugat, O., Delamare, J., Reyne, G., MAGnetic Micro-Actuators & Systems MAGMAS, IEEE Trans. Magn. 39(5) (2003) 3607–3612.

    Article  Google Scholar 

  17. Holman, R., Utturkar, Y., Mittal, R., Smith, B.L., Cattafesta, L., Formation Criterion for Synthetic Jets, AIAA J. 43(10) (2005) 2110–2116.

    Article  Google Scholar 

  18. Lagorce, L., Brand, O., Allen, M.G., Magnetic Microactuators Based on Polymer Magnets, J. Microelectromech. Syst. 8(1) (1999) 2–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this paper

Cite this paper

Agashe, J.S., Sheplak, M., Arnold, D.P., Cattafesta, L. (2008). MEMS-Based Electrodynamic Synthetic Jet Actuators for Flow Control Applications. In: Morrison, J.F., Birch, D.M., Lavoie, P. (eds) IUTAM Symposium on Flow Control and MEMS. IUTAM Bookseries, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6858-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6858-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6857-7

  • Online ISBN: 978-1-4020-6858-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics