MEMS-Based Electrodynamic Synthetic Jet Actuators for Flow Control Applications

  • Janhavi S. Agashe
  • Mark Sheplak
  • David P. Arnold
  • Louis Cattafesta
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 7)

Abstract

Synthetic jet actuators are used in various applications, such as separation control, mixing enhancement, and thermal management. Each of these requires the design to be optimized to meet specific performance requirements. This paper presents a design and scaling analysis of an electrodynamic synthetic jet actuator using a lumped element modeling approach. Various performance parameters, such as the resonant frequency, output volumetric flow rate and velocity, and jet formation, are studied as a function of device scale and current density. The viability and potential advantages of microscale synthetic jets are discussed.

Key words

Synthetic jets electrodynamic actuation MEMS flow control scaling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith, B.L., Glezer, A., The Formation and Evolution of Synthetic Jets, Physics of Fluids 10(9) (1998) 2281–2297.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Amitay, M., Smith, B.L., Glezer, A., Aerodynamic Flow Control Using Synthetic Jet Technology, in Proceedings of 36th Aerospace Sciences Meeting and Exhibit, AIAA 1998-0208 (1998).Google Scholar
  3. 3.
    McCormick, D., Boundary Layer Separation Control with Directed Synthetic Jets, in Proceedings of 38th Aerospace Sciences Meeting and Exhibit, AIAA 2000-0519 (2000).Google Scholar
  4. 4.
    Chen, Y., Liang, S., Aung, K., Glezer, A., Enhanced Mixing in a Simulated Combustor Using Synthetic Jet Actuators, in Proceedings of 37th Aerospace Sciences Meeting and Exhibit, AIAA 1999-0449 (1999).Google Scholar
  5. 5.
    Crook, A., Sadri, A.M., Wood, N.J., The Development and Implementation of Synthetic Jets for the Control of Separated Flow, in Proceedings of 37th Aerospace Sciences Meeting and Exhibit, AIAA 1999-3176 (1999).Google Scholar
  6. 6.
    Baysal, O., Koklu, M., Erbas, N., Design Optimization of Micro Synthetic Jet Actuator for Flow Separation Control, Journal of Fluids Engineering 128(5) (2006) 1053–1062.CrossRefGoogle Scholar
  7. 7.
    Coe, D.J., Allen, M.G., Smith, B.L., Glezer, A., Addressable Micromachined Jet Arrays, in Proceedings of 8th International Conference on Solid-State Sensors and Actuators, Vol. 2 (1995) 329–332.CrossRefGoogle Scholar
  8. 8.
    Parviz, B.A., Najafi, K., Muller, M., Bernal, L.P., Washabaugh, P.D., Electrostatically Driven Synthetic Microjet Arrays as a Propulsion Method for Micro Flight Part I: Principles of Operation, Modeling, and Simulation, Microsystem Technologies 11(11) (2005) 1214–1222.CrossRefGoogle Scholar
  9. 9.
    Lee, C., Hong, G., Ha, Q., Mallinson, S., A Piezoelectrically Actuated Micro Synthetic Jet for Active Flow Control, Sensors and Actuators: B, Chemical 108(1) (2003) 168–174.CrossRefGoogle Scholar
  10. 10.
    Kercher, D.S., Jeong-Bong L., Brand, O., Allen, M.G., Glezer, A., Microjet Cooling Devices for Thermal Management Of Electronics, IEEE Transactions on Components and Packaging Technologies 26(2) (2003) 359–366.CrossRefGoogle Scholar
  11. 11.
    Rizzetta, D., Visbal, M., Stanek, M., Numerical Investigation of Synthetic-Jet Flowfields, AIAA J. 37(8) (1999) 919–927.CrossRefGoogle Scholar
  12. 12.
    Yamaleev, N., Carpenter, M., Ferguson, F., Reduced-Order Model for Efficient Simulation of Synthetic Jet Actuators, AIAA J. 43(2) (2005) 357–369.CrossRefGoogle Scholar
  13. 13.
    Tang, H., Zhong, S., Incompressible Flow Model of Synthetic Jet Actuators, AIAA J. 44(4) (2006) 908–912.CrossRefGoogle Scholar
  14. 14.
    Gallas, Q., Holman, R., Nishida, T., Carroll, B., Sheplak, M., Cattafesta, L., Lumped Element Modeling of Piezoelectric-Driven Synthetic Jet Actuators, AIAA J. 41(2) (2003) 240–247.CrossRefGoogle Scholar
  15. 15.
    Ekinci, K.L., Roukes, M.L., Nanoelectromechanical Systems, Review of Scientific Instruments 76(6) (2005) 061101.CrossRefGoogle Scholar
  16. 16.
    Cugat, O., Delamare, J., Reyne, G., MAGnetic Micro-Actuators & Systems MAGMAS, IEEE Trans. Magn. 39(5) (2003) 3607–3612.CrossRefGoogle Scholar
  17. 17.
    Holman, R., Utturkar, Y., Mittal, R., Smith, B.L., Cattafesta, L., Formation Criterion for Synthetic Jets, AIAA J. 43(10) (2005) 2110–2116.CrossRefGoogle Scholar
  18. 18.
    Lagorce, L., Brand, O., Allen, M.G., Magnetic Microactuators Based on Polymer Magnets, J. Microelectromech. Syst. 8(1) (1999) 2–9.CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Janhavi S. Agashe
    • 1
  • Mark Sheplak
    • 1
  • David P. Arnold
    • 1
  • Louis Cattafesta
    • 1
  1. 1.Interdisciplinary Microsystems GroupUniversity of FloridaGainesvilleUSA

Personalised recommendations