Skip to main content

Estrogen, Cholinergic System and Cognition

  • Chapter

Disparities in the epidemiology of mental disorders in males and females provide indirect evidence for hormonal and other factors in disease etiology and course. For example, as hormonal levels fluctuate with the start of the menopause, women begin to experience menstrual cycle changes accompanied by a variety of distressing symptoms such as hot flashes, sleep problems, mood swings, anxiety, difficulty concentrating, disorientation, and memory lapses. These clinical signs suggest that hormonal changes impact both reproductive and non-reproductive areas of the brain. This chapter focuses on the effects of estrogen on the basal forebrain cholinergic system. Considerable evidence indicates a close correlation between the integrity of the basal forebrain cholinergic system and cognitive and attentional behaviors, with estrogen playing a significant role since it produces an upregulation of cholinergic function, as well as neurite outgrowth and branching. Structural changes have been postulated as integral steps in cellular processes leading to information storage in the nervous system, and perhaps estrogen-induced neurite sprouting within cholinergic neurons could underlie the behavioral effects of estrogen treatment. Findings from our work and that of many others suggest that the specific influences of estrogen on the structure and function of the cholinergic system could explain its ability to maintain certain aspects of memory. These findings may shed light on why women are more susceptible to dementia after the menopause, and thus have important consequences for the quality of life of aging women.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sherwin BB. Estrogen and cognitive functioning in women. Endocr Rev 2003; 24:133–151.

    Article  PubMed  CAS  Google Scholar 

  2. Speck O, Ernst T, Braun J, et al. Gender differences in the functional organization of the brain for working memory. Neuroreport 2000; 11:2581–2585.

    Article  PubMed  CAS  Google Scholar 

  3. Rosenberg L, Park S. Verbal and spatial functions across the menstrual cycle in healthy young women. Psychoneuroendocrinology 2002; 27:835–841.

    Article  PubMed  CAS  Google Scholar 

  4. Phillips SM, Sherwin BB. Variations in memory function and sex steroid hormones across the menstrual cycle. Psychoneuroendocrinology 1992; 17:497–506.

    Article  PubMed  CAS  Google Scholar 

  5. Hampson E. Variations in sex-related cognitive abilities across the menstrual cycle. Brain Cogn 1990; 14:26–43.

    Article  PubMed  CAS  Google Scholar 

  6. Hampson E, Kimura D. Reciprocal effects of hormonal fluctuations on human motor and perceptual-spatial skills. Behav Neurosci 1988; 102:456–459.

    Article  PubMed  CAS  Google Scholar 

  7. Hampson E. Estrogen-related variations in human spatial and articulatory motor skills. Psychoneuroendocrinology 1990; 15:97–111.

    Article  PubMed  CAS  Google Scholar 

  8. Zec RF, Trivedi MA. The effects of estrogen replacement therapy on neuropsychological functioning in postmenopausal women with and without dementia: a critical and theoretical review. Neuropsychol Rev 2002; 12:65–109.

    Article  PubMed  Google Scholar 

  9. Rice MM, Graves AB, McCurry SM, et al. Estrogen replacement therapy and cognitive function in postmenopausal women without dementia. Am J Med 1997; 103:26S–35S.

    Article  PubMed  CAS  Google Scholar 

  10. Kampen DL, Sherwin BB. Estrogen use and verbal memory in healthy postmenopausal women. Obstet Gynecol 1994; 110:979–983.

    Article  Google Scholar 

  11. Robinson D, Friedman L, Marcus R, et al. Estrogen replacement therapy and memory in older women. J Am Geriat Soc 1994; 42:919–922.

    PubMed  CAS  Google Scholar 

  12. Jacobs DM, Tang MX, Stern Y, et al. Cognitive function in nondemented older women who took estrogen after menopause. Neurology 1998; 50:368–373.

    PubMed  CAS  Google Scholar 

  13. Smith YR, Giordani B, Lajiness-O’Neill R, et al. Long-term estrogen replacement is associated with improved nonverbal memory and attentional measures in postmenopausal women. Fertil Steril 2001; 76:1101–1107.

    Article  PubMed  CAS  Google Scholar 

  14. Carlson LE, Sherwin BB. Steroid hormones, memory and mood in a healthy elderly population. Psychoneuroendocrinology 1998; 23:583–603.

    Article  PubMed  CAS  Google Scholar 

  15. Resnick SM, Metter EJ, Zonderman AB. Estrogen replacement therapy and longitudinal decline in visual memory–A possible protective effect? Neurology 1997; 49:1491–1497.

    PubMed  CAS  Google Scholar 

  16. Yaffe K, Sawaya G, Lieberburg I, et al. Estrogen therapy in postmenopausal women: Effects on cognitive function and dementia. J Am Med Assoc 1998; 279:688–695.

    Article  CAS  Google Scholar 

  17. Sherwin BB. Estrogenic effects on memory in women. Ann NY Acad Sci 1994; 743:213–230.

    Article  PubMed  CAS  Google Scholar 

  18. Krug R, Born J, Rasch B. A 3-day estrogen treatment improves prefrontal cortex-dependent cognitive function in postmenopausal women. Psychoneuroendocrinology 2006; 31:965–975.

    Article  PubMed  CAS  Google Scholar 

  19. Matthews K, Cauley J, Yaffe K, et al. Estrogen replacement therapy and cognitive decline in older community women. J Am Geriatr Soc 1999; 47:518–523.

    PubMed  CAS  Google Scholar 

  20. Sherwin BB. Estrogen and cognitive aging in women. Neuroscience 2006; 138:1021–1026.

    Article  PubMed  CAS  Google Scholar 

  21. Henderson VW. Estrogen-containing hormone therapy and Alzheimer’s disease risk: Understanding discrepant inferences from observational and experimental research. Neuroscience 2006; 138:1031–1039.

    Article  PubMed  CAS  Google Scholar 

  22. Pinkerton JV, Henderson VW. Estrogen and cognition, with a focus on Alzheimer’s disease. Semin Reprod Med 2005; 23:172–179.

    Article  PubMed  CAS  Google Scholar 

  23. Almeida OP, Lautenschlager NT, Vasikaran S, et al. A 20-week randomized controlled trial of estradiol replacement therapy for women aged 70 years and older: effect on mood, cognition and quality of life. Neurobiol Aging 2006; 27:141–149.

    Article  PubMed  CAS  Google Scholar 

  24. Thal LJ, Thomas RG, Mulnard R, et al. Estrogen levels do not correlate with improvement in cognition. Arch Neurol 2003; 60:209–212.

    Article  PubMed  Google Scholar 

  25. Turgeon JL, McDonnell DP, Martin KA, et al. Hormone therapy: physiological complexity belies therapeutic simplicity. Science 2004; 304:1269–1273.

    Article  PubMed  CAS  Google Scholar 

  26. Rapp PR, Morrison JH, Roberts JA. Cyclic estrogen replacement improves cognitive function in aged ovariectomized rhesus monkeys. J Neurosci 2003; 23:5708–5714.

    PubMed  CAS  Google Scholar 

  27. Tinkler GP, Voytko ML. Estrogen modulates cognitive and cholinergic processes in surgically menopausal monkeys. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:423–431.

    Article  PubMed  CAS  Google Scholar 

  28. Lacreuse A. Effects of ovarian hormones on cognitive function in nonhuman primates. Neuroscience 2006; 138:859–867.

    Article  PubMed  CAS  Google Scholar 

  29. Voytko ML. Estrogen and the cholinergic system modulate visuospatial attention in monkeys (macaca fascicularis). Behav Neurosci 2002; 116:187–197.

    Article  PubMed  CAS  Google Scholar 

  30. Daniel JM, Fader AJ, Spencer AL, et al. Estrogen enhances performance of female rats during acquisition of a radial arm maze. Horm Behav 1997; 32:217–225.

    Article  PubMed  CAS  Google Scholar 

  31. Fader AJ, Hendricson AW, Dohanich GP. Estrogen improves performance of reinforced T-maze alternation and prevents the amnestic effects of scopolamine administered systemically or intrahippocampally. Neurobiol Learn Mem 1998; 69:225–240.

    Article  PubMed  CAS  Google Scholar 

  32. Sandstrom NJ, Williams CL. Memory retention is modulated by acute estradiol and progesterone replacement. Behav Neurosci 2001; 115:384–393.

    Article  PubMed  CAS  Google Scholar 

  33. Luine VN, Richards ST, Wu VY, et al. Estradiol enhances learning and memory in a spatial memory task and effects levels of monoaminergic neurotransmitters. Horm Behav 1998; 34:149–162.

    Article  PubMed  CAS  Google Scholar 

  34. O’Neal MF, Means LW, Poole MC, et al. Estrogen affects performance of ovariectomized rats in a two-choice water-escape working memory task. Psychoneuroendocrinology 1996; 21:51–65.

    Article  PubMed  Google Scholar 

  35. Bimonte-Nelson HA, Francis KR, Umphlet CD, et al. Progesterone reverses the spatial memory enhancements initiated by tonic and cyclic oestrogen therapy in middle-aged ovariectomized female rats. Eur J Neurosci 2006; 24:229–242.

    Article  PubMed  Google Scholar 

  36. Rhodes ME, Frye CA. ER3-selective SERMs produce mnemonic-enhancing effects in the inhibitory avoidance and water maze tasks. Neurobiol Learn Mem 2006; 85:183–191.

    Article  PubMed  CAS  Google Scholar 

  37. Dohanich GP, Fader AJ, Javorsky DJ. Estrogen and estrogen-progesterone treatments counteract the effect of scopolamine on reinforced T-maze alternation in female rats. Behav Neurosci 1994; 108:988–992.

    Article  PubMed  CAS  Google Scholar 

  38. Singh M, Meyer EM, Millard WJ, et al. Ovarian steroid deprivation results in a reversible learning impairment and compromised cholinergic function in female Sprague-Dawley rats. Brain Res 1994; 644:305–312.

    Article  PubMed  CAS  Google Scholar 

  39. Williams CL. Short-term but not long-term estradiol replacement improves radial-arm maze performance of young and aging rats. Soc Neurosci Abstr 1996; 22:1164.

    Google Scholar 

  40. Daniel JM, Dohanich GP. Acetylcholine mediates the estrogen-induced increase in NMDA receptor binding in CA1 of the hippocampus and the associated improvement in working memory. J Neurosci 2001; 21:6949–6956.

    PubMed  CAS  Google Scholar 

  41. Markowska AL, Savonenko AV. Effectiveness of estrogen replacement in restoration of cognitive function after long-term estrogen withdrawal in aging rats. J Neurosci 2002; 22:10985–10995.

    PubMed  CAS  Google Scholar 

  42. Daniel JM, Hulst JL, Berbling JL. Estradiol replacement enhances working memory in middle-aged rats when initiated immediately after ovariectomy but not after a long-term period of ovarian hormone deprivation. Endocrinology 2006; 147:607–614.

    Article  PubMed  CAS  Google Scholar 

  43. Packard MG, Kohlmaier JR, Alexander GM. Post-training intra-hippocampal estradiol injections enhance spatial memory in male rats: interaction with cholinergic systems. Behav Neurosci 1996; 110:626–632.

    Article  PubMed  CAS  Google Scholar 

  44. Packard MG, Teather LA. Posttraining estradiol injections enhance memory in ovariectomized rats: Cholinergic blockade and synergism. Neurobiol Learn Mem 1997; 68:172–188.

    Article  PubMed  CAS  Google Scholar 

  45. Luine VN, Rodriguez M. Effects of estradiol on radial arm maze performance of young and aged rats. Beha Neural Biol 1994; 62:230–236.

    Article  CAS  Google Scholar 

  46. Hasselmo ME. The role of acetylcholine in learning and memory. Curr Opin Neurobiol 2006; 16:710–715.

    Article  PubMed  CAS  Google Scholar 

  47. Brann DW, Dhandapani K, Wakade C, et al. Neurotrophic and neuroprotective actions of estrogen: Basic mechanisms and clinical implications. Steroids 2007; 72:381–405.

    Article  PubMed  CAS  Google Scholar 

  48. Luine VN. Estradiol increases choline acetyltransferase activity in specific basal forebrain nuclei and projection areas of female rats. Exper Neurol 1985; 89:484–490.

    Article  CAS  Google Scholar 

  49. Dumas J, Hancur-Bucci C, Naylor M, et al. Estrogen treatment effects on anticholinergic-induced cognitive dysfunction in normal postmenopausal women. Neuropsychopharmacology 2006; 31:2065–2078.

    Article  PubMed  CAS  Google Scholar 

  50. Gibbs RB. Estrogen and nerve growth factor-related systems in brain. In: Hormonal Restructuring of the Adult Brain. Annals of the New York Academy of Sciences, Vol. 743. November 14, 1994. Edited by New York Academy of Sciences, 1994:165–199.

    Google Scholar 

  51. Beninger RJ, Wirsching BA, Jhamandas K, et al. Animal studies of brain acetylcholine and memory. Arch Gerontol Geriatr Suppl 1989; 1:71–89.

    PubMed  CAS  Google Scholar 

  52. Tanabe F, Miyasaka N, Kubota T, et al. Estrogen and progesterone improve scopolamine-induced impairment of spatial memory. J Med Dent Sci 2004; 51:89–98.

    PubMed  Google Scholar 

  53. Gibbs RB, Wu DH, Hersh LB, et al. Effects of estrogen replacement on the relative levels of choline acetyltransferase, trkA, and nerve growth factor messenger RNAs in the basal forebrain and hippocampal formation of adult rats. Exper Neurol 1994; 129:70–80.

    Article  CAS  Google Scholar 

  54. McGaughy J, Sarter M. Effects of ovariectomy, 192 IgG-saporin-induced cortical cholinergic deafferentation, and administration of estradiol on sustained attention performance in rats. Behav Neurosci 1999; 113:1216–1232.

    Article  PubMed  CAS  Google Scholar 

  55. Miller MM, Hyder SM, Assayag R, et al. Estrogen modulates spontaneous alternation and the cholinergic phenotype in the basal forebrain. Neuroscience 1999; 91:1143–1153.

    Article  PubMed  CAS  Google Scholar 

  56. Farr SA, Banks WA, Morley JE. Estradiol potentiates acetylcholine and glutamate-mediated post-trial memory processing in the hippocampus. Brain Res 2000; 864:263–269.

    Article  PubMed  CAS  Google Scholar 

  57. Rudick CN, Gibbs RB, Woolley CS. A role for the basal forebrain cholinergic system in estrogen-induced disinhibition of hippocampal pyramidal cells. J Neurosci 2003; 23:4479–4490.

    PubMed  CAS  Google Scholar 

  58. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 1st ed. Sydney: Academic, 1982.

    Google Scholar 

  59. de Lacalle S, Kulkarni S, Wiley RG. Lesion induced transneuronal plasticity of the cholinergic innervation in the adult rat entorhinal cortex. Eur J Neurosci 1998; 10:1054–1062.

    Article  PubMed  Google Scholar 

  60. Saenz C, Dominguez R, de Lacalle S. Estrogen contributes to structural recovery after a lesion. Neurosci Lett 2006; 392:198–201.

    Article  PubMed  CAS  Google Scholar 

  61. Hartonian I, Mufson EJ, de Lacalle S. Long-term plastic changes in galanin innervation in the rat basal forebrain. Neuroscience 2002; 115:787–795.

    Article  PubMed  CAS  Google Scholar 

  62. Frye CA. Estrus-associated decrements in a water maze task are limited to acquisition. Physiol Behav 1995; 57:5–14.

    Article  PubMed  CAS  Google Scholar 

  63. Warren SG, Juraska JM. Spatial and non spatial learning across the rat estrous cycle. Behav Neurosci 1997; 111:259–265.

    Article  PubMed  CAS  Google Scholar 

  64. Gibbs RB. Estrogen replacement enhances acquisition of a spatial memory task and reduces deficits associated with hippocampal muscarinic receptor inhibition. Horm Behav 1999; 36:222–233.

    Article  PubMed  CAS  Google Scholar 

  65. Gibbs RB. Basal forebrain cholinergic neurons are necessary for estrogen to enhance acquisition of a delayed matching-to-position T-maze task. Horm Behav 2002; 42:245–257.

    Article  PubMed  CAS  Google Scholar 

  66. Heikkinen T, Puolivali J, Liu L, et al. Effects of ovariectomy and estrogen treatment on learning and hippocampal neurotransmitters in mice. Horm Behav 2002; 41:22–32.

    Article  PubMed  CAS  Google Scholar 

  67. Holmes MM, Wide JK, Galea LA. Low levels of estradiol facilitate, whereas high levels of estradiol impair working memory performance on the radial arm maze. Behav Neurosci 2002; 116:928–934.

    Article  PubMed  CAS  Google Scholar 

  68. Galea LA, Wide JK, Paine TA, et al. High levels of estradiol disrupt conditioned place preference learning, stimulus response learning and reference memory but have limited effects on working memory. Behav Brain Res 2001; 126:115–126.

    Article  PubMed  CAS  Google Scholar 

  69. Ferrini M, Bisagno V, Piroli G, et al. Effects of estrogens on choline-acetyltransferase immunoreactivity and GAP-43 mRNA in the forebrain of young and aging male rats. Cell Mol Neurobiol 2002; 22:289–301.

    Article  PubMed  CAS  Google Scholar 

  70. Aggarwal P, Gibbs RB. Estrogen replacement does not prevent the loss of choline acetyltransferase-positive cells in the basal forebrain following either neurochemical or mechanical lesions. Brain Res 2000; 882:75–85.

    Article  PubMed  CAS  Google Scholar 

  71. Gibbs RB. Effects of estrogen on basal forebrain cholinergic neurons vary as a function of dose and duration of treatment. Brain Res 1997; 757:10–16.

    Article  PubMed  CAS  Google Scholar 

  72. Gibbs RB, Pfaff DW. Effects of estrogen and fimbria/fornix transection on p75NGFR and ChAT expression in the medial septum and diagonal band of Broca. Exp Neurol 1992; 116:23–39.

    Article  PubMed  CAS  Google Scholar 

  73. McGaughy J, Dalley JW, Morrison CH, et al. Selective behavioral and neurochemical effects of cholinergic lesions produced by intrabasalis infusions of 192 IgG-saporin on attentional performance in a five-choice serial reaction time task. J Neurosci 2002; 22:1905–1913.

    PubMed  CAS  Google Scholar 

  74. Horvath KM, Hartig W, Van der Veen R, et al. 17beta-Estradiol enhances cortical cholinergic innervation and preserves synaptic density following excitotoxic lesions to the rat nucleus basalis magnocellularis. Neuroscience 2002; 110:489–504.

    Article  PubMed  CAS  Google Scholar 

  75. Nakamura N, Fujita H, Kawata M. Effects of gonadectomy on immunoreactivity for choline acetyltransferase in the cortex, hippocampus, and basal forebrain of adult male rats. Neuroscience 2002; 109:473–485.

    Article  PubMed  CAS  Google Scholar 

  76. Gibbs RB, Nelson D, Anthony MS, et al. Effects of long term hormone replacement and of tibolone on choline acetyltransferase and acetylcholinesterase activities in the brains of ovariectomized, cynomologous monkeys. Neuroscience 2002; 113:907–914.

    Article  PubMed  CAS  Google Scholar 

  77. Tinkler GP, Tobin JR, Voytko ML. Effects of two years of estrogen loss or replacement on nucleus basalis cholinergic neurons and cholinergic fibers to the dorsolateral prefrontal and inferior parietal cortex of monkeys. J Comp Neurol 2004; 469:507–521.

    Article  PubMed  CAS  Google Scholar 

  78. Kritzer MF, Kohama SG. Ovarian hormones differentially influence immunoreactivity for dopamine n- hydroxylase, choline acetyltransferase, and serotonin in the dorsolateral prefrontal cortex of adult rhesus monkeys. J Comp Neurol 1999; 409:438–451.

    Article  PubMed  CAS  Google Scholar 

  79. Singer CA, Pang PA, Dobie DJ, et al. Estrogen increases GAP-43 (Neuromodulin) mRNA in the preoptic area of aged rats. Neurobiol aging 1996; 17:661–663.

    Article  PubMed  CAS  Google Scholar 

  80. Brinton RD, Tran J, Proffitt P, et al. 17 8-estradiol enhances the outgrowth and survival of neocortical neurons in culture. Neurochem Res 1997; 22:1339–1351.

    Article  PubMed  CAS  Google Scholar 

  81. Ferreira A, Caceres A. Estrogen-enhanced neurite growth: evidence for a selective induction of tau and stable microtubules. J Neurosci 1991; 11:392–400.

    PubMed  CAS  Google Scholar 

  82. Dominguez R, Jalali C, de Lacalle S. Morphological effects of estrogen on cholinergic neurons in vitro involves activation of extracellular signal-regulated kinases. J Neurosci 2004; 24:982–990.

    Article  PubMed  CAS  Google Scholar 

  83. Segal M, Murphy D. Estradiol induces formation of dendritic spines in hippocampal neurons: functional correlates. Horm Behav 2001; 40:156–159.

    Article  PubMed  CAS  Google Scholar 

  84. Garcia-Segura LM, Azcoitia I, DonCarlos LL. Neuroprotection by estradiol. Prog Neurobiol 2001; 63:29–60.

    Article  PubMed  CAS  Google Scholar 

  85. Desjardins GC, Beaudet A, Meaney MJ, et al. Estrogen-induced hypothalamic 8-endorphin neuron loss: a possible model for hypothalamic aging. Exp Gerontol 1995; 30:253–267.

    Article  PubMed  CAS  Google Scholar 

  86. Sudo S, Wen TC, Desaki J, et al. 8-Estradiol protects hippocampal CA1 neurons against transient forebrain ischemia in gerbil. Neurosci Res 1997; 29:345–354.

    Article  PubMed  CAS  Google Scholar 

  87. Luine VN, Khylchevskaya RI, McEwen BS. Effect of gonadal steroids on activities of monoamine oxidase and choline acetylase in rat brain. Brain Res 1975; 86:293–306.

    Article  PubMed  CAS  Google Scholar 

  88. McEwen BS, Biegon A, Davis PG, et al. Steroid hormones: humoral signals which alter brain cell properties and functions. Recent Prog Horm Res 1982; 38:41–92.

    PubMed  CAS  Google Scholar 

  89. Gibbs RB, Aggarwal P. Estrogen and basal forebrain cholinergic neurons: Implications for brain aging and Alzheimer’s disease- related cognitive decline. Horm Behav 1998; 34:98–111.

    Article  PubMed  CAS  Google Scholar 

  90. Gibbs RB. Effects of gonadal hormone replacement on measures of basal forebrain cholinergic function. Neuroscience 2000; 101:931–938.

    Article  PubMed  CAS  Google Scholar 

  91. Gibbs RB. Effects of ageing and long-term hormone replacement on cholinergic neurones in the medial septum and nucleus basalis magnocellularis of ovariectomized rats. J Neuroendocrinol 2003; 15:477–485.

    Article  PubMed  CAS  Google Scholar 

  92. Lam TT, Leranth C. Role of the medial septum diagonal band of Broca cholinergic neurons in oestrogen-induced spine synapse formation on hippocampal CA1 pyramidal cells of female rats. Eur J Neurosci 2003; 17:1997–2005.

    Article  PubMed  Google Scholar 

  93. Bora SH, Liu Z, Kecojevic A, et al. Direct, complex effects of estrogens on basal forebrain cholinergic neurons. Exp Neurol 2005; 194:506–522.

    Article  PubMed  CAS  Google Scholar 

  94. Grandholm A-CE, Ford KA, Hyde LA, et al. Estrogen restores cognition and cholinergic phenotype in an animal model of Down syndrome. Physiol Behav 2002; 77:371–385.

    Article  Google Scholar 

  95. McMillan PJ, Singer CA, Dorsa DM. The effects of ovariectomy and estrogen replacement on trkA and choline acetyltransferase mRNA expression in the basal forebrain of the adult female Sprague-Dawley rat. J Neurosci 1996; 16:1860–1865.

    PubMed  CAS  Google Scholar 

  96. Pongrac JL, Gibbs RB, DeFranco DB. Estrogen-mediated regulation of cholinergic expression in basal forebrain neurons requires extracellular-signal-regulated kinase activity. Neuroscience 2004; 124:809–816.

    Article  PubMed  CAS  Google Scholar 

  97. Szego EM, Barabas K, Balog J, et al. Estrogen induces estrogen receptor alpha-dependent cAMP response element-binding protein phosphorylation via mitogen activated protein kinase pathway in basal forebrain cholinergic neurons in vivo. J Neurosci 2006; 26:4104–4110.

    Article  PubMed  CAS  Google Scholar 

  98. Pan Y, Anthony M, Clarkson TB. Effect of estradiol and soy phytoestrogens on choline acetyltransferase and nerve growth factor mRNAs in the frontal cortex and hippocampus of female rats. Proc Soc Exp Biol Med 1999; 221:118–125.

    Article  PubMed  CAS  Google Scholar 

  99. Watters JJ, Dorsa DM. Transcriptional effects of estrogen on neuronal neurotensin gene expression involve cAMP/protein kinase A-dependent signaling mechanisms. J Neurosci 1998; 18:6672–6680.

    PubMed  CAS  Google Scholar 

  100. Gabor R, Nagle R, Johnson DA, et al. Estrogen enhances potassium-stimulated acetylcholine release in the rat hippocampus. Brain Res 2003; 962:244–247.

    Article  PubMed  CAS  Google Scholar 

  101. Resnick SM, Henderson VW. Hormone therapy and risk of Alzheimer disease: a critical time. JAMA 2002; 288:2170–2172.

    Article  PubMed  Google Scholar 

  102. Maki PM. Hormone therapy and cognitive function: Is there a critical period for benefit? Neuroscience 2006; 138:1027–1030.

    Article  PubMed  CAS  Google Scholar 

  103. Shughrue PJ, Lane MV, Merchenthaler I. Comparative distribution of estrogen receptor-alpha and -β mRNA in the rat central nervous system. J Comp Neurol 1997; 388:507–525.

    Article  PubMed  CAS  Google Scholar 

  104. Shughrue PJ, Scrimo PJ, Merchenthaler I. Estrogen binding and estrogen receptor characterization (ERα and ERβ ) in the cholinergic neurons of the rat basal forebrain. Neuroscience 2000; 96:41–49.

    Article  PubMed  CAS  Google Scholar 

  105. Shughrue PJ, Lane MV, Merchenthaler I. Biologically active estrogen receptor-β: evidence from in vivo autoradiographic studies with estrogen receptor :-knockout mice. Endocrinology 1999; 140:2613–2620.

    Article  PubMed  CAS  Google Scholar 

  106. Miettinen RA, Kalesnykas G, Koivisto EH. Estimation of the total number of cholinergic neurons containing estrogen receptor-M in the rat basal forebrain. J Histochem Cytochem 2002; 50:891–902.

    PubMed  CAS  Google Scholar 

  107. McMillan PJ, LeMaster AM, Dorsa DM. Tamoxifen enhances choline acetyltransferase mRNA expression in rat basal forebrain cholinergic neurons. Mol Brain Res 2002; 103:140–145.

    Article  PubMed  CAS  Google Scholar 

  108. Singer CA, Figueroa-Masot XA, Batchelor RH, et al. The mitogen-activated protein kinase pathway mediates estrogen neuroprotection after glutamate toxicity in primary cortical neurons. J Neurosci 1999; 19:2455–2463.

    PubMed  CAS  Google Scholar 

  109. Singh M, Setalo G, Jr., Guan X, et al. Estrogen-induced activation of mitogen-activated protein kinase in cerebral cortical explants: convergence of estrogen and neurotrophin signaling pathways. J Neurosci 1999; 19:1179–1188.

    PubMed  CAS  Google Scholar 

  110. Singh M, Setalo G, Jr., Guan X, et al. Estrogen-induced activation of the mitogen-activated protein kinase cascade in the cerebral cortex of estrogen receptor-a knock-out mice. J Neurosci 2000; 20:1694–1700.

    PubMed  CAS  Google Scholar 

  111. Pedata F, Giovannelli L, Pepeu G. GM1 ganglioside facilitates the recovery of high-affinity choline uptake in the cerebral cortex of rats with a lesion of the nucleus basalis magnocellularis. J Neurosci Res 1984; 12:421–427.

    Article  PubMed  CAS  Google Scholar 

  112. Sarter M, Parikh V. Choline transporters, cholinergic transmission and cognition. Nat Rev Neurosci 2005; 6:48–56.

    Article  PubMed  CAS  Google Scholar 

  113. Towart LA, Alves SE, Znamensky V, et al. Subcellular relationships between cholinergic terminals and estrogen receptor-alpha in the dorsal hippocampus. J Comp Neurol 2003; 463:390–401.

    Article  PubMed  CAS  Google Scholar 

  114. Leranth C, Shanabrough M, Horvath TL. Hormonal regulation of hippocampal spine synapse density involves subcortical mediation. Neuroscience 2000; 101:349–356.

    Article  PubMed  CAS  Google Scholar 

  115. Mufson EJ, Cai WJ, Jaffar S, et al. Estrogen receptor immunoreactivity within subregions of the rat forebrain: neuronal distribution and association with perikarya containing choline acetyltransferase. Brain Res 1999; 849:253–274.

    Article  PubMed  CAS  Google Scholar 

  116. Ishunina TA, Swaab DF. Increased neuronal metabolic activity and estrogen receptors in the vertical limb of the diagonal band of Broca in Alzheimer’s disease: relation to sex and aging. Exp Neurol 2003; 183:159–172.

    Article  PubMed  CAS  Google Scholar 

  117. Henke H, Lang W. Cholinergic enzymes in neocortex, hippocampus and basal forebrain of non-neurological and senile dementia of Alzheimer-type patients. Brain Res 1983; 267:281–291.

    Article  PubMed  CAS  Google Scholar 

  118. Allen SJ, MacGowan SH, Tyler S, et al. Reduced cholinergic function in normal and Alzheimer’s disease brain is associated with apolipoprotein E4 genotype. Neurosci Lett 1997; 239:33–36.

    Article  PubMed  CAS  Google Scholar 

  119. Pappas BA, Bayley PJ, Bui BK, et al. Choline acetyltransferase activity and cognitive domain scores of Alzheimer’s patients. Neurobiol Aging 2000; 21:11–17.

    Article  PubMed  CAS  Google Scholar 

  120. Schonknecht P, Pantel J, Klinga K, et al. Reduced cerebrospinal fluid estradiol levels are associated with increased β-amyloid levels in female patients with Alzheimer’s disease. Neurosci Lett 2001; 307:122–124.

    Article  PubMed  CAS  Google Scholar 

  121. Auld DS, Kornecook TJ, Bastianetto S, et al. Alzheimer’s disease and the basal forebrain cholinergic system: relations to β-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 2002; 68:209–245.

    Article  PubMed  CAS  Google Scholar 

  122. Wilcock GK, Esiri MM, Bowen DM, et al. Alzheimer’s disease: correlation of cortical choline acetyltransferase activity with the severity of dementia and histological abnormalities. J Neurol Sci 1982; 57:407–417.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, B.V

About this chapter

Cite this chapter

de Lacalle, S., Hyler, B., Borowski, T. (2008). Estrogen, Cholinergic System and Cognition. In: Ritsner, M.S., Weizman, A. (eds) Neuroactive Steroids in Brain Function, Behavior and Neuropsychiatric Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6854-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6854-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6853-9

  • Online ISBN: 978-1-4020-6854-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics