Skip to main content

The Role of Midbrain 3α,5α-THP in Mediating Exploration, Anxiety, Social, and Reproductive Behavior

  • Chapter

Ovarian steroids, including 17β-estradiol (E2) and progesterone (P4) influence the onset and duration of reproductive behavior of female rodents. Separate lines of investigation also suggest that E2 and P4 influence exploratory, anxiety, and social behaviors. In addition to ovarian secretion, E2 and P4 are also neurosteroids produced de novo in brain. The midbrain ventral tegmental area (VTA), which is involved in motivation and reward, is an important brain area for mediating steroids’ effects on reproductive behavior. As such, this chapter discusses research from our laboratory on the role, sources, and substrates of steroid hormones’ modulation of exploratory, anxiety, social, and reproductive behaviors. The approach that we have used is manipulating, in the VTA, E2 and P4 and its metabolites, dihydroprogesterone (DHP) and 5α-pregnan-3α-ol-20-one (3α,5α-THP), their de novo production, and subsequent effects on behavior via traditional actions at intracellular progestin receptors (PRs) and non-traditional substrates, such as GABAA, NMDA, and dopamine receptors. Endpoints examined include behavior in the open field, elevated plus maze, social choice, social interaction, and paced mating tasks and levels of E2 and progestins in serum, midbrain, hippocampus, striatum, and cortex. Manipulating 3α,5α-THP in the VTA influences exploration, anxiety, social and reproductive behavior, as well as neurosteroidogenesis in the VTA, hippocampus, and cortex.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feder HH. Hormones and sexual behavior. Ann Rev Psychol 1984; 35:165–200.

    Article  CAS  Google Scholar 

  2. Whalen RE, Luttge WG. Differential localization of progesterone uptake in brain. Role of sex, estrogen pretreatment and adrenalectomy. Brain Res 1971; 33:147–155.

    Article  PubMed  CAS  Google Scholar 

  3. Malsbury CW, Kow LM, Pfaff DW. Effects of medial hypothalamic lesions on the lordosis response and other behaviors in remale golden hamsters. Physiol Behav 1977; 19:223–237.

    Article  PubMed  CAS  Google Scholar 

  4. Muntz JA, Rose JD, Shults RC. Disruption of lordosis by dorsal midbrain lesions in the golden hamster. Brain Res Bull 1980; 5:359–364.

    Article  PubMed  CAS  Google Scholar 

  5. Rose JD. Changes in hypothalamic neuronal function related to hormonal induction of lordosis in behaving hamsters. Physiol Behav 1990; 47:1201–1212.

    Article  PubMed  CAS  Google Scholar 

  6. Frye CA, Gardiner SG. Progestins can have a membrane-mediated action in rat midbrain for facilitation of sexual receptivity. Horm Behav 1996; 30:682–691.

    Article  PubMed  CAS  Google Scholar 

  7. Pleim ET, Lisciotto CA, DeBold JF. Facilitation of sexual receptivity in hamsters by simultaneous progesterone implants into the VMH and ventral mesencephalon. Horm Behav 1990; 24:139–151.

    Article  PubMed  CAS  Google Scholar 

  8. Rubin BS, Barfield RJ. Progesterone in the ventromedial hypothalamus facilitates estrous behavior in ovariectomized, estrogen-primed rats. Endocrinology 1983; 113(2):797–804.

    Article  PubMed  CAS  Google Scholar 

  9. DeBold JF, Malsbury CW. Facilitation of sexual receptivity by hypothalamic and midbrain implants of progesterone in female hamsters Physiol Behav 1989; 46:655–660.

    Article  PubMed  CAS  Google Scholar 

  10. Takahashi LK, Lisk RD Dual progesterone action in diencephalon facilitates the induction of sexual receptivity in estrogen-primed golden hamsters Physiol Behav 1988; 44:741–747.

    Article  PubMed  CAS  Google Scholar 

  11. Frye CA. The role of neurosteroids and non-genomic effects of progestins and androgens in mediating sexual receptivity of rodents. Brain Res Brain Res Rev 2001; 37(1–3):201–222.

    Article  PubMed  CAS  Google Scholar 

  12. Frye CA, Vongher JM. Progestins’ rapid facilitation of lordosis when applied to the ventral tegmentum corresponds to efficacy at enhancing GABA(A) receptor activity. J Neuroendocrinol 1999; 11:829–837.

    Article  PubMed  CAS  Google Scholar 

  13. Frye CA, Vongher JM. Ventral tegmental area infusions of inhibitors of the biosynthesis and metabolism of 31, 5,-THP attenuate lordosis of hormone-primed and behavioural oestrous rats and hamsters. J Neuroendocrinol 2001; 13:1076–1086.

    Article  PubMed  CAS  Google Scholar 

  14. Corpechot C, Young J, Calvel M, Wehrey C, Veltz JN, Touyer G, Mouren M, Prasad VV, Banner C, Sjovall J, et al. Neurosteroids: 3r-hydroxy–-pregnan-20-one and its precursors in the brain, plasma, and steroidogenic glands of male and female rats. Endocrinology 1993; 133:1003–1009.

    Article  PubMed  CAS  Google Scholar 

  15. Freeman MC, Dupke KC, Croteau CM. Extinction of the estrogen-induced daily signal for LH release in the rat: a role for the proestrous surge of progesterone. Endocrinol 1976; 99:223–229.

    Article  CAS  Google Scholar 

  16. Frye CA, Bayon LE. Mating stimuli influence endogenous variations in the neurosteroids 3r, 5,-THP and 3–Diol. J Neuroendocrinol 1999; 11:839–847.

    Article  PubMed  CAS  Google Scholar 

  17. Holzbauer M. Physiological variations in the ovarian production of 51-pregnane derivatives with sedative properties in the rat. J Steroid Biochem 1975; 6:1307–1310.

    Article  PubMed  CAS  Google Scholar 

  18. Purdy RH, Morrow AL, Blinn JR, Paul SM. Synthesis, metabolism, and pharmacological activity of 31-hydroxy steroids which potentiate GABA-receptor-mediated chloride ion uptake in rat cerebral cortical synaptoneurosomes. J Med Chem 1990; 33:1572–1581.

    Article  PubMed  CAS  Google Scholar 

  19. Frye CA, Bayon LE, Pursnani NK, Purdy RH. The neurosteroids, progesterone and 31, 5,-THP, enhance sexual motivation, receptivity, and proceptivity in female rats. Brain Res 1998; 808:72–83.

    Article  PubMed  CAS  Google Scholar 

  20. Beyer C, Gonzalez-Flores O, Gonzalez-Mariscal G. Ring A reduced progestins potently stimulate estrous behavior in rats: paradoxical effect through the progesterone receptor. Physiol Behav 1995; 58:985–993.

    Article  PubMed  CAS  Google Scholar 

  21. Frye CA, Bayon LE, Vongher JM. Intravenous progesterone elicits a more rapid induction of lordosis in rats than does SKF38393. Psychobiol 2000; 28:99–109.

    CAS  Google Scholar 

  22. Lisk RD. A comparison of the effectiveness of intravenous, as opposed to subcutaneous, injection of progesterone for the induction of estrous behavior in the rat. Can J Biochem Physiol 1960; 38:1381–1383.

    PubMed  CAS  Google Scholar 

  23. Meyerson BJ. Relationship between the anesthetic and gestagenic action and estrous behavior-inducing activity of different progestins. Endocrinology 1967; 81:369–374.

    Article  PubMed  CAS  Google Scholar 

  24. Meyerson B. Latency between intravenous injection of progestins and the appearance of estrous behavior in estrogen-treated ovariectomized rats. Horm Behav 1972; 3:1–9.

    Article  PubMed  CAS  Google Scholar 

  25. Kubli-Garfias C, Whalen RE. Induction of lordosis behavior in female rats by intravenous administration of progestins. Horm Behav 1977; 9:380–386.

    Article  PubMed  CAS  Google Scholar 

  26. Beyer C, Gonzalez-Mariscal G, Eguibar JR, Gomora P. Lordosis facilitation in estrogen primed rats by intrabrain injection of pregnanes. Pharmacol Biochem Behav 1988; 31:919–926.

    Article  PubMed  CAS  Google Scholar 

  27. Gonzalez-Mariscal G, Gonzalez-Flores O, Beyer C. Intrahypothalamic injection of RU486 antagonizes the lordosis induced by ring A-reduced progestins. Physiol Behav 1989; 46:435–438.

    Article  PubMed  CAS  Google Scholar 

  28. Frye CA, DeBold JF. P-3-BSA, but not P-11-BSA, implants in the VTA rapidly facilitate receptivity in hamsters after progesterone priming to the VMH. Behav Brain Res 1993; 53:167–175.

    Article  PubMed  CAS  Google Scholar 

  29. Mellon SH, Griffin LD, Compagnone NA. Biosynthesis and action of neurosteroids. Brain Res Brain Res Rev 2001; 37:3–12.

    Article  PubMed  CAS  Google Scholar 

  30. Robel P, Young J, Corpechot C, Mayo W, Perche F, Haug M, Simon H, Baulieu EE. Biosynthesis and assay of neurosteroids in rats and mice: functional correlates. J Steroid Biochem Mol Biol 1995; 53:355–360.

    Article  PubMed  CAS  Google Scholar 

  31. Li X, Bertics PJ, Karavolas HJ. Regional distribution of cytosolic and particulate 5α-dihydroprogesterone 3α–hydroxysteroid oxidoreductases in female rat brain. J Steroid Biochem Mol Biol 1997; 60:311–318.

    Article  PubMed  CAS  Google Scholar 

  32. Roselli CE, Snipes CA. Progesterone 5α-reductase in mouse brain. Brain Res 1984; 305:197–202.

    Article  PubMed  CAS  Google Scholar 

  33. Frye CA, Leadbetter EA. 53-reduced progesterone metabolites are essential in hamster VTA for sexual receptivity. Life Sci 1994; 54:653–659.

    Article  PubMed  CAS  Google Scholar 

  34. Griffin LD, Mellon SH. Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. Proc Natl Acad Sci USA 1999; 96:13512–13517.

    Article  PubMed  CAS  Google Scholar 

  35. Frye CA, Petralia SM, Rhodes ME, Stein B. Fluoxetine may influence lordosis of rats through effects on midbrain 3α,5α-THP concentrations. Ann NY Acad Sci 2003; 1007:37–41.

    Article  PubMed  CAS  Google Scholar 

  36. Dubrovsky B. A paracrine component of salient symptoms of depression in Cushing’s of diencephalic origin, and in perimenstrual syndromes: a hypothesis. Med Hypotheses 2006; 66:936–938.

    Article  PubMed  CAS  Google Scholar 

  37. Cheney DL, Uzunov D, Guidotti A. Pregnenolone sulfate antagonizes dizocilpine amnesia: role for allopregnanolone. Neuroreport 1995; 6:1697–1700.

    Article  PubMed  CAS  Google Scholar 

  38. Ichikawa S, Sawada T, Nakamura Y, Morioka H. Ovarian secretion of pregnane compounds during the estrous cycle and pregnancy in rats. Endocrinology 1974; 94:1615–1620.

    Article  PubMed  CAS  Google Scholar 

  39. Paul SM, Purdy RH. Neuroactive steroids. FASEB J 1992; 6:2311–2322.

    PubMed  CAS  Google Scholar 

  40. Purdy RH, Morrow AL, Moore PH, Jr., Paul SM. Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci USA 1991; 88:4553–4557.

    Article  PubMed  CAS  Google Scholar 

  41. Krueger KE, Papadopoulos V. Peripheral-type benzodiazepine receptors mediate translocation of cholesterol from outer to inner mitochondrial membranes in adrenocortical cells. J Biol Chem 1990; 265:15015–15022.

    PubMed  CAS  Google Scholar 

  42. Papadopoulos V, Amri H, Boujrad N, Cascio C, Culty M, Garnier M, Hardwick M, Li H, Vidic B, Brown AS, Reversa JL, Bernassau JM, Drieu K. Peripheral benzodiazepine receptor in cholesterol transport and steroidogenesis. Steroids 1997; 62:21–28.

    Article  PubMed  CAS  Google Scholar 

  43. Stoffel-Wagner B. Neurosteroid metabolism in the human brain. Eur J Endocrinol 2001; 145:669–679.

    Article  PubMed  CAS  Google Scholar 

  44. Frye CA, Petralia SM. Mitochondrial benzodiazepine receptors in the ventral tegmental area modulate sexual behaviour of cycling or hormone-primed hamsters. J Neuroendocrinol 2003; 15:677–686.

    Article  PubMed  CAS  Google Scholar 

  45. Frye CA, Petralia SM. Lordosis of rats is modified by neurosteroidogenic effects of membrane benzodiazepine receptors in the ventral tegmental area. Neuroendocrinology 2003; 77:71–82.

    Article  PubMed  CAS  Google Scholar 

  46. Petralia SM, Jahagirdar V, Frye CA. Inhibiting biosynthesis and/or metabolism of progestins in the ventral tegmental area attenuates lordosis of rats in behavioural oestrus. J Neuroendocrinol 2005; 17:545–552.

    Article  PubMed  CAS  Google Scholar 

  47. Frye C, Seliga A. Effects of olanzapine infusions to the ventral tegmental area on lordosis and midbrain 34, 5,-THP concentrations in rats. Psychopharmacology (Berl) 2003; 170:132–139.

    Article  CAS  Google Scholar 

  48. Gronemeyer H. Transcription activation by estrogen and progesterone receptors. Annu Rev Genet 1991; 25:89–123.

    Article  PubMed  CAS  Google Scholar 

  49. Hernandez MP, Chadli A, Toft DO. HSP40 binding is the first step in the HSP90 chaperoning pathway for the progesterone receptor. J Biol Chem 2002; 277:11873–11881.

    Article  PubMed  CAS  Google Scholar 

  50. Etgen AM. Progestin receptors and the activation of female reproductive behavior: a critical review. Horm Behav 1984; 18:411–430.

    Article  PubMed  CAS  Google Scholar 

  51. McGinnis MY, Krey LC, MacLusky NJ, McEwen BS. Steroid receptor levels in intact and ovariectomized estrogen-treated rats: an examination of quantitative, temporal and endocrine factors influencing the efficacy of an estradiol stimulus. Neuroendocrinology 1981; 33:158–165.

    Article  PubMed  CAS  Google Scholar 

  52. Pfaff DW, McEwen BS. Actions of estrogens and progestins on nerve cells. Science 1983; 219:808–814.

    Article  PubMed  CAS  Google Scholar 

  53. Acosta-Martinez M, Gonzalez-Flores O, Etgen AM. The role of progestin receptors and the mitogen-activated protein kinase pathway in delta opioid receptor facilitation of female reproductive behaviors. Horm Behav 2006; 49:458–462.

    Article  PubMed  CAS  Google Scholar 

  54. Pollio G, Xue P, Zanisi M, Nicolin A, Maggi A. Antisense oligonucleotide blocks progesterone-induced lordosis behavior in ovariectomized rats. Brain Res Mol Brain Res 1993; 19:135–139.

    Article  PubMed  CAS  Google Scholar 

  55. Brown TJ, MacLusky NJ, Shanabrough M, Naftolin F. Comparison of age- and sex-related changes in cell nuclear estrogen-binding capacity and progestin receptor induction in the rat brain. Endocrinology 1990; 126:2965–2972.

    Article  PubMed  CAS  Google Scholar 

  56. MacLusky NJ, McEwen BS. Progestin receptors in rat brain: distribution and properties of cytoplasmic progestin-binding sites. Endocrinology 1980; 106:192–202.

    Article  PubMed  CAS  Google Scholar 

  57. Parsons B, MacLusky NJ, Krey L, Pfaff DW, McEwen BS. The temporal relationship between estrogen-inducible progestin receptors in the female rat brain and the time course of estrogen activation of mating behavior. Endocrinology 1980; 107:774–779.

    Article  PubMed  CAS  Google Scholar 

  58. Munn AR 3rd, Sar M, Stumpf WE. Topographic distribution of progestin target cells in hamster brain and pituitary after injection of [3H]R5020. Brain Res 1983; 274:1–10.

    Article  PubMed  Google Scholar 

  59. Ogawa S, Pfaff DW. Application of antisense DNA method for the study of molecular bases of brain function and behavior. Behav Genet 1996; 26:279–292.

    Article  PubMed  CAS  Google Scholar 

  60. Rainbow TC, Parsons B, McEwen BS. Sex differences in rat brain oestrogen and progestin receptors. Nature 1982; 300:648–649.

    Article  PubMed  CAS  Google Scholar 

  61. Vathy IU, Etgen AM, Barfield RJ. Actions of progestins on estrous behaviour in female rats. Physiol Behav 1987; 40:591–595.

    Article  PubMed  CAS  Google Scholar 

  62. Frye CA. The role of neurosteroids and nongenomic effects of progestins in the ventral tegmental area in mediating sexual receptivity of rodents. Horm Behav 2001; 40:226–233.

    Article  PubMed  CAS  Google Scholar 

  63. Krebs CJ, Jarvis ED, Chan J, Lydon JP, Ogawa S, Pfaff DW. A membrane-associated progesterone-binding protein, 25-Dx, is regulated by progesterone in brain regions involved in female reproductive behaviors. Proc Natl Acad Sci USA 2000; 97:12816–12821.

    Article  PubMed  CAS  Google Scholar 

  64. Frye CA, Mermelstein PG, DeBold JF. Evidence for a non-genomic action of progestins on sexual receptivity in hamster ventral tegmental area but not hypothalamus. Brain Res 1992; 578:87–93.

    Article  PubMed  CAS  Google Scholar 

  65. Harrison NL, Majewska MD, Harrington JW, Barker JL. Structure-activity relationships for steroid interaction with the gamma-aminobutyric acidA receptor complex. J Pharmacol Exp Ther 1987; 241:346–353.

    PubMed  CAS  Google Scholar 

  66. Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 1986; 232:1004–1007.

    Article  PubMed  CAS  Google Scholar 

  67. Belelli D, McCauley L, Gee KW. Heterotropic cooperativity between putative recognition sites for progesterone metabolites and the atypical benzodiazepine Ro 5–4864. J Neurochem 1990; 55:83–87.

    Article  PubMed  CAS  Google Scholar 

  68. Morrow AL, Suzdak PD, Paul SM. Steroid hormone metabolites potentiate GABA receptor-mediated chloride ion flux with nanomolar potency. Eur J Pharmacol 1987; 142:483–485.

    Article  PubMed  CAS  Google Scholar 

  69. Gee KW, Bolger MB, Brinton RE, Coirini H, McEwen BS. Steroid modulation of the chloride ionophore in rat brain: structure-activity requirements, regional dependence and mechanism of action. J Pharmacol Exp Ther 1988; 246:803–812.

    PubMed  CAS  Google Scholar 

  70. Masco D, Weigel R, Carrer HF. Gamma aminobutyric acid mediates ventromedial hypothalamic mechanisms controlling the execution of lordotic responses in the female rat. Behav Brain Res 1986; 19:153–162.

    Article  PubMed  CAS  Google Scholar 

  71. Westerling P, Lindgren S, Meyerson B. Functional changes in GABAA receptor stimulation during the oestrous cycle of the rat. Br J Pharmacol 1991; 103:1580–1584.

    PubMed  CAS  Google Scholar 

  72. O’Connor LH, Nock B, McEwen BS. Regional specificity of gamma-aminobutyric acid receptor regulation by estradiol. Neuroendocrinology 1988; 47:473–481.

    Article  PubMed  Google Scholar 

  73. Lopez-Colome AM, McCarthy M, Beyer C. Enhancement of [3H]muscimol binding to brain synaptic membranes by progesterone and related pregnanes. Eur J Pharmacol 1990; 176:297–303.

    Article  PubMed  CAS  Google Scholar 

  74. Wu FS, Gibbs TT, Farb DH. Inverse modulation of gamma-aminobutyric acid- and glycine-induced currents by progesterone. Mol Pharmacol 1990; 37:597–602.

    PubMed  CAS  Google Scholar 

  75. McCarthy MM, Coirini H, Schumacher M, Pfaff DW, McEwen BS, Schwartz-Giblin S. Ovarian steroid modulation of [3H]muscimol binding in the spinal cord of the rat. Brain Res 1991; 556:321–323.

    Article  PubMed  CAS  Google Scholar 

  76. McCarthy MM, Felzenberg E, Robbins A, Pfaff DW, Schwartz-Giblin S. Infusions of diazepam and allopregnanolone into the midbrain central gray facilitate open-field behavior and sexual receptivity in female rats. Horm Behav 1995; 29:279–295.

    Article  PubMed  CAS  Google Scholar 

  77. Bayer VE, Pickel VM. GABA-labeled terminals form proportionally more synapses with dopaminergic neurons containing low densities of tyrosine hydroxylase-immunoreactivity in rat ventral tegmental area. Brain Res 1991; 559:44–55.

    Article  PubMed  CAS  Google Scholar 

  78. DeBold JF, Frye CA. Genomic and non-genomic actions of progesterone in the control of female hamster sexual behavior. Horm Behav 1994; 28:445–453.

    Article  PubMed  CAS  Google Scholar 

  79. Frye CA, Mermelstein PG, DeBold JF. Bicuculline infused into the hamster ventral tegmentum inhibits, while sodium valproate facilitates, sexual receptivity. Pharmacol Biochem Behav 1993; 46:1–8.

    Article  PubMed  CAS  Google Scholar 

  80. Kole MH, Fuchs E, Ziemann U, Paulus W, Ebert U. Changes in 5-HT1A and NMDA binding sites by a single rapid transcranial magnetic stimulation procedure in rats. Brain Res 1999; 826:309–312.

    Article  PubMed  CAS  Google Scholar 

  81. Chu HP, Etgen AM. A potential role of cyclic GMP in the regulation of lordosis behavior of female rats. Horm Behav 1997; 32(2):125–132.

    Article  PubMed  CAS  Google Scholar 

  82. Gibbs RB. Treatment with estrogen and progesterone affects relative levels of brain-derived neurotrophic factor mRNA and protein in different regions of the adult rat brain. Brain Res 1999; 844:20–27.

    Article  PubMed  CAS  Google Scholar 

  83. Smith SS. Progesterone administration attenuates excitatory amino acid responses of cerebellar Purkinje cells. Neuroscience 1991; 42:309–320.

    Article  PubMed  CAS  Google Scholar 

  84. Cyr M, Ghribi O, Di Paolo T. Regional and selective effects of oestradiol and progesterone on NMDA and AMPA receptors in the rat brain. J Neuroendocrinol 2000; 12(5):445–452.

    Article  PubMed  CAS  Google Scholar 

  85. Carbone S, Szwarcfarb B, Losada M, Moguilevsky JA. Effect of ovarian hormones on the hypothalamic excitatory amino acids system during sexual maturation in female rats. Neuroendocrinology 1995; 61:235–242.

    Article  PubMed  CAS  Google Scholar 

  86. Petralia SM, Debold JF, Frye CA. MK-801 infusions to the ventral tegmental area and ventromedial hypothalamus produce opposite effects on lordosis of hormone-primed rats. Pharmacol Biochem Behav 2007; 86(2):377–385.

    Article  PubMed  CAS  Google Scholar 

  87. Fleischmann A, Vincent PA, Etgen AM. Effects of non-competitive NMDA receptor antagonists on reproductive and motor behaviors in female rats. Brain Res 1991; 568:138–146.

    Article  PubMed  CAS  Google Scholar 

  88. Kow LM, Harlan RE, Shivers BD, Pfaff DW. Inhibition of the lordosis reflex in rats by intrahypothalamic infusion of neural excitatory agents: evidence that the hypothalamus contains separate inhibitory and facilitatory elements. Brain Res 1985; 341:26–34.

    Article  PubMed  CAS  Google Scholar 

  89. Westerink BH, de Boer P, de Vries JB, Kruse CG, Long SK. Antipsychotic drugs induce similar effects on the release of dopamine and noradrenaline in the medial prefrontal cortex of the rat brain. Eur J Pharmacol 1998; 361:27–33.

    Article  PubMed  CAS  Google Scholar 

  90. Caggiula AR, Herndon JG, Jr., Scanlon R, Greenstone D, Bradshaw W, Sharp D. Dissociation of active from immobility components of sexual behavior in female rats by central 6-hydroxydopamine: implications for CA involvement in sexual behavior and sensorimotor responsiveness. Brain Res 1979; 172:505–520.

    Article  PubMed  CAS  Google Scholar 

  91. Becker JB, Rudick CN, Jenkins WJ. The role of dopamine in the nucleus accumbens and striatum during sexual behavior in the female rat. J Neurosci 2001; 21:3236–3241.

    PubMed  CAS  Google Scholar 

  92. Becker JB, Ramirez VD. Experimental studies on the development of sex differences in the release of dopamine from striatal tissue fragments in vitro. Neuroendocrinology 1981; 32:168–173.

    Article  PubMed  CAS  Google Scholar 

  93. Fernandez-Ruiz JJ, Hernandez ML, de Miguel R, Ramos JA. Nigrostriatal and mesolimbic dopaminergic activities were modified throughout the ovarian cycle of female rats. J Neural Transm Gen Sect 1991; 85:223–229.

    Article  PubMed  CAS  Google Scholar 

  94. Morissette M, Di Paolo T. Sex and estrous cycle variations of rat striatal dopamine uptake sites. Neuroendocrinology 1993; 58(1):16–22.

    Article  PubMed  CAS  Google Scholar 

  95. Harden DG, King D, Finlay JM, Grace AA. Depletion of dopamine in the prefrontal cortex decreases the basal electrophysiological activity of mesolimbic dopamine neurons. Brain Res 1998; 794:96–102.

    Article  PubMed  CAS  Google Scholar 

  96. Herndon JG, Jr., Caggiula AR, Sharp D, Ellis D, Redgate E. Selective enhancement of the lordotic component of female sexual behavior in rats following destruction of central catecholamine-containing systems. Brain Res 1978; 141:137–151.

    Article  PubMed  CAS  Google Scholar 

  97. Thomas DN, Post RM, Pert A. Central and systemic corticosterone differentially affect dopamine and norepinephrine in the frontal cortex of the awake freely moving rat. Ann NY Acad Sci 1994; 746:467–469.

    Article  PubMed  CAS  Google Scholar 

  98. Mani SK, Blaustein JD, Allen JM, Law SW, O’Malley BW, Clark JH. Inhibition of rat sexual behavior by antisense oligonucleotides to the progesterone receptor. Endocrinology 1994; 135:1409–414.

    Article  PubMed  CAS  Google Scholar 

  99. Apostolakis EM, Garai J, Fox C, Smith CL, Watson SJ, Clark JH, O’Malley BW. Dopaminergic regulation of progesterone receptors: brain D5 dopamine receptors mediate induction of lordosis by D1-like agonists in rats. J Neurosci 1996; 16:4823–4834.

    PubMed  CAS  Google Scholar 

  100. Mani SK, Reyna AM, Chen JZ, Mulac-Jericevic B, Conneely OM. Differential response of progesterone receptor isoforms in hormone-dependent and -independent facilitation of female sexual receptivity. Mol Endocrinol 2006; 20:1322–1332.

    Article  PubMed  CAS  Google Scholar 

  101. Collado ML, Rodriguez-Manzo G, Cruz ML. Effect of progesterone upon adenylate cyclase activity and cAMP levels on brain areas. Pharmacol Biochem Behav 1985; 23:501–504.

    Article  PubMed  CAS  Google Scholar 

  102. Mani SK, Fienberg AA, O’Callaghan JP, Snyder GL, Allen PB, Dash PK, Moore AN, Mitchell AJ, Bibb J, Greengard P, O’Malley BW. Requirement for DARPP-32 in progesterone-facilitated sexual receptivity in female rats and mice. Science 2000; 287:1053–1056.

    Article  PubMed  CAS  Google Scholar 

  103. Greengard P, Nairn AC, Girault JA, Ouimet CC, Snyder GL, Fisone G, Allen PB, Fienberg A, Nishi A. The DARPP-32/protein phosphatase-1 cascade: a model for signal integration. Brain Res Brain Res Rev 1998; 26:274–284.

    Article  PubMed  CAS  Google Scholar 

  104. Patchev VK, Hassan AH, Holsboer DF, Almeida OF. The neurosteroid tetrahydroprogesterone attenuates the endocrine response to stress and exerts glucocorticoid-like effects on vasopressin gene transcription in the rat hypothalamus. Neuropsychopharmacology 1996; 15:533–540.

    Article  PubMed  CAS  Google Scholar 

  105. Mensah-Nyagan AG, Do-Rego JL, Beaujean D, Luu-The V, Pelletier G, Vaudry H. Regulation of neurosteroid biosynthesis in the frog diencephalon by GABA and endozepines. Horm Behav 2001; 40:218–225.

    Article  PubMed  CAS  Google Scholar 

  106. Schlinger BA, Soma KK, London SE. Neurosteroids and brain sexual differentiation. Trends Neurosci 2001; 24:429–431.

    Article  PubMed  CAS  Google Scholar 

  107. Kellogg CK, Frye CA. Endogenous levels of 5 alpha-reduced progestins and androgens in fetal vs. adult rat brains. Brain Res Dev Brain Res 1999; 24:429–431.

    Google Scholar 

  108. Kehoe P, Mallinson K, McCormick CM, Frye CA. Central allopregnanolone is increased in rat pups in response to repeated, short episodes of neonatal isolation. Brain Res Dev Brain Res 2000; 124:133–136.

    Article  PubMed  CAS  Google Scholar 

  109. McCormick CM, Kehoe P, Mallinson K, Cecchi L, Frye CA. Neonatal isolation alters stress hormone and mesolimbic dopamine release in juvenile rats. Pharmacol Biochem Behav 2002; 73(1):77–85.

    Article  PubMed  CAS  Google Scholar 

  110. Drugan RC, Paul SM, Crawley JN. Decreased forebrain [35S]TBPS binding and increased [3H]muscimol binding in rats that do not develop stress-induced behavioral depression. Brain Res 1993; 631:270–276.

    Article  PubMed  CAS  Google Scholar 

  111. Serra M, Pisu MG, Floris I, Floris S, Cannas E, Mossa A, Trapani G, Latrofa A, Purdy RH, Biggio G. Social isolation increases the response of peripheral benzodiazepine receptors in the rat. Neurochem Int 2004; 45:141–148.

    Article  PubMed  CAS  Google Scholar 

  112. Papaioannou A, Dafni U, Alikaridis F, Bolaris S, Stylianopoulou F. Effects of neonatal handling on basal and stress-induced monoamine levels in the male and female rat brain. Neuroscience 2002; 114:195–206.

    Article  PubMed  CAS  Google Scholar 

  113. McCormick CM, Linkroum W, Sallinen BJ, Miller NW. Peripheral and central sex steroids have differential effects on the HPA axis of male and female rats. Stress 2002; 5:235–247.

    Article  PubMed  CAS  Google Scholar 

  114. Pearson Murphy BE, Allison CM. Determination of progesterone and some of its neuroactive ring A-reduced metabolites in human serum. J Steroid Biochem Bol Biol 2000; 74:137–142.

    Article  CAS  Google Scholar 

  115. Holzbauer M. Physiological variations in the ovarian production of 5alpha-pregnane derivatives with sedative properties in the rat. J Steroid Biochem 1975; 6:1307–1310.

    Article  PubMed  CAS  Google Scholar 

  116. Young EA. Sex differences and the HPA axis: implications for psychiatric disease. J Gend Specif Med 1998; 1:21–27.

    PubMed  CAS  Google Scholar 

  117. Leung A, Chue P. Sex differences in schizophrenia, a review of the literature. Acta Psychiatr Scand Suppl 2000; 401:3–38.

    Article  PubMed  CAS  Google Scholar 

  118. Bergemann N, Parzer P, Nagl I, Salbach B, Runnebaum B, Mundt Ch, Resch F. Acute psychiatric admission and menstrual cycle phase in women with schizophrenia. Arch Womens Ment Health 2002; 5:119–126.

    Article  PubMed  CAS  Google Scholar 

  119. Gallo MA, Smith SS. Progesterone withdrawal decreases latency to and increases duration of electrified prod burial: a possible rat model of PMS anxiety. Pharmacol Biochem Behav 1993; 46:897–904.

    Article  PubMed  CAS  Google Scholar 

  120. Frye CA, Walf AA. Hippocampal 3α,5α-THP may alter depressive behavior of pregnant and lactating rats. Pharmacol Biochem Behav 2004; 78:531–540.

    Article  PubMed  CAS  Google Scholar 

  121. Norman RM, Malla AK. Stressful life events and schizophrenia. I: a review of the research. Br J Psychiatry 1993; 162:161–166.

    Article  PubMed  CAS  Google Scholar 

  122. Kurumaji A, Nomoto H, Yoshikawa T, Okubo Y, Toru M. An association study between two missense variations of the benzodiazepine receptor (peripheral) gene and schizophrenia in a Japanese sample. J Neural Transm 2000; 107:491–500.

    Article  PubMed  CAS  Google Scholar 

  123. Casada, JH, Roache, JD. Neurosteriods in PTSD. International Society for Traumatic Stress Studies Annual Meeting, 2004.

    Google Scholar 

  124. Dong E, Matsumoto K, Uzunova V, Sugaya I, Takahata H, Nomura H, Watanabe H, Costa E, Guidotti A. Brain 5α-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation. Proc Natl Acad Sci USA 2001; 98:2849–2854.

    Article  PubMed  CAS  Google Scholar 

  125. Pinna G, Costa E, Guidotti A. Changes in brain testosterone and allopregnanolone biosynthesis elicit aggressive behavior. Proc Natl Acad Sci USA 2005; 102:2135–2140.

    Article  PubMed  CAS  Google Scholar 

  126. Marx CE, VanDoren MJ, Duncan GE, Lieberman JA, Morrow AL. Olanzapine and clozapine increase the GABAergic neuroactive steroid allopregnanolone in rodents. Neuropsychopharmacology 2003; 28:1–13.

    Article  PubMed  CAS  Google Scholar 

  127. Marx SG, Wentz MJ, Mackay LB, Schlembach D, Maul H, Fittkow C, Given R, Vedernikov Y, Saade GR, Garfield RE Effects of progesterone on iNOS, COX-2, and collagen expression in the cervix. J Histochem Cytochem 2006; 54:623–639.

    Article  PubMed  CAS  Google Scholar 

  128. Uzunova V, Sheline Y, Davis JM, Rasmusson A, Uzunov DP, Costa E, Guidotti A. Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc Natl Acad Sci USA 1998; 95:3239–3244.

    Article  PubMed  CAS  Google Scholar 

  129. Freeman EW, Jabara S, Sondheimer SJ, Auletto R. Citalopram in PMS patients with prior SSRI treatment failure: a preliminary study. J Womens Health Gend Based Med 2002; 11:459–464.

    Article  PubMed  Google Scholar 

  130. Assuncao SS, Ruschel SI, Rosa Lde C, Campos JA, Alves MJ, Bracco OL, de Lima MS. Weight gain management in patients with schizophrenia during treatment with olanzapine in association with nizatidine. Rev Bras Psiquiatr 2006; 28:270–276.

    PubMed  Google Scholar 

  131. Monteleone P, Bencivenga R, Longobardi N, Serritella C, Maj M. Differential responses of circulating ghrelin to high-fat or high-carbohydrate meal in healthy women. J Clin Endocrinol Metab 2003; 88:5510–5514.

    Article  PubMed  CAS  Google Scholar 

  132. Torres H, Rhodes ME, Frye CA. Fluoxetine-induced deficits in sexual behavior of female hamsters are attenuated with 3α,5α-THP-replacement. McNair Program Research Symposium, 2003.

    Google Scholar 

  133. Frye CA, Rhodes ME, Petralia SM, Walf AA, Sumida K, Edinger KL. 3α-hydroxy-5α–pregnan-20-one in the midbrain ventral tegmental area mediates social, sexual, and affective behaviors. Neuroscience 2006; 138:1007–1014.

    Article  PubMed  CAS  Google Scholar 

  134. Carter CS. Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology 1998; 23:779–818.

    Article  PubMed  CAS  Google Scholar 

  135. Frye CA, Petralia SM, Rhodes ME. Estrous sycle and sex differences in performance on anxiety tasks coincide with increases in hippocampal progesterone and 3p, 5,-THP. Pharmacol Biochem Behav 2000; 67:587–596.

    Article  PubMed  CAS  Google Scholar 

  136. Mora S, Dussaubat N, Diaz-Veliz G. Effects of the estrous vyvle and ovarian hormones on behavioral indices of anxiety in female rats. Psychoneuroendocrinology 1996; 21:609–620.

    Article  PubMed  CAS  Google Scholar 

  137. Vinogradova OS, Kitchigina VF, Kudina TA, Zenchenko KI. Spontaneous activity and sensory responses of hippocampal neurons during persistent theta-rhythm evoked by median raphe nucleus blockade in rabbit. Neuroscience 1999; 94:745–753.

    Article  PubMed  CAS  Google Scholar 

  138. Galeeva A, Tuohimaa P. Analysis of mouse plus-maze behavior modulated by ovarian steroids. Behav Brain Res 2001; 119:41–47.

    Article  PubMed  CAS  Google Scholar 

  139. Laconi MR, Casteller G, Gargiulo PA, Bregonzio C, Cabrera RJ. The anxiolytic effect of allopregnanolone is associated with gonadal hormonal status in female rats. Eur J Pharmacol 2001; 417:111–116.

    Article  PubMed  CAS  Google Scholar 

  140. Rhodes ME, Frye CA. Inhibiting progesterone metabolism in the hippocampus of rats in behavioral estrus decreases anxiolytic behaviors and enhances exploratory and antinociceptive behaviors. Cogn Affect Behav Neurosci 2001; 1:287–296.

    Article  PubMed  CAS  Google Scholar 

  141. Walf AA, Rhodes ME, Frye CA. Ovarian steroids enhance object recognition in naturally cycling and ovariectomized, hormone-primed rats. Neurobiol Learn Mem 2006; 86:35–46.

    Article  PubMed  CAS  Google Scholar 

  142. Schindler CJ, Slamberova R, Vathy I. Bicuculline seizure susceptibility and nigral GABAA α1 receptor mRNA is altered in adult prenatally morphine-exposed females. Psychoneuroendocrinology 2003; 28:348–363.

    Article  PubMed  CAS  Google Scholar 

  143. McCarthy MM, Felzenberg E, Robbins A, Pfaff DW, Schwartz-Giblin S. Infusions of diazepam and allopregnanolone into the midbrain central gray facilitate open-field behavior and sexual receptivity in female rats. Horm Behav 1995; 29:279–295.

    Article  PubMed  CAS  Google Scholar 

  144. Fernandez-Guasti A, Vega-Matuszczyk J, Larsson K. Synergistic action of estradiol, progesterone and testosterone on rat proceptive behavior. Physiol Behav 1991; 50:1007–1011.

    Article  PubMed  CAS  Google Scholar 

  145. Steel E. Female sexual behaviour: roles of gonadal hormones in the Syrian hamster. Physiol Behav 1983 Oct; 31(4):453–459.

    Article  PubMed  CAS  Google Scholar 

  146. Pfeifle JK, Edwards DA. Midbrain lesions eliminate sexual receptivity but spare sexual motivation in female rats. Physiol Behav 1983; 31:385–389.

    Article  PubMed  CAS  Google Scholar 

  147. Cheng YJ, Karavolas HJ. Conversion of progesterone to 5 -pregnane-3, 20-dione and 3–hydroxy-5–-pregnan-20-one by rat medical basal hypothalami and the effects of estradiol and stage of estrous cycle on the conversion. Endocrinology 1973; 93:1157–1162.

    Article  PubMed  CAS  Google Scholar 

  148. Sinchak K, Mills RH, Tao L, LaPolt P, Lu JK, Micevych P. Estrogen induces de novo progesterone synthesis in astrocytes. Dev Neurosci 2003; 25:343–348.

    Article  PubMed  CAS  Google Scholar 

  149. Jung-Testas I, Hu ZY, Baulieu EE, Robel P. Neurosteroids: biosynthesis of pregnenolone and progesterone in primary cultures of rat glial cells. Endocrinology 1989; 125:2083–2091.

    Article  PubMed  CAS  Google Scholar 

  150. Schumacher M, Guennoun R, Robert F, Carelli C, Gago N, Ghoumari A, Gonzalez Deniselle MC, Gonzalez SL, Ibanez C, Labombarda F, Coirini H, Baulieu EE, De Nicola AF. Local synthesis and dual actions of progesterone in the nervous system: neuroprotection and myelination. Growth Horm IGF Res 2004; 14(Suppl A):S18–S33.

    Article  PubMed  CAS  Google Scholar 

  151. Zwain IH, Yen SS, Cheng CY. Astrocytes cultured in vitro produce estradiol-171 and express aromatase cytochrome P-450 (P-450 AROM) mRNA. Biochim Biophys Acta 1997; 1334:338–348.

    PubMed  CAS  Google Scholar 

  152. Robel P, Young J, Corpechot C, Mayo W, Perche F, Haug M, Simon H, Baulieu EE. Biosynthesis and assay of neurosteroids in rats and mice: functional correlates. J Steroid Biochem Mol Biol 1995; 53:355–360.

    Article  PubMed  CAS  Google Scholar 

  153. Balthazart J, Foidart A. Brain aromatase and the control of male sexual behavior. J Steroid Biochem Mol Biol 1993; 44:521–540.

    Article  PubMed  CAS  Google Scholar 

  154. Wood GE, Beylin AV, Shors TJ. The contribution of adrenal and reproductive hormones to the opposing effects of stress on trace conditioning in males versus females. Behav Neurosci 2001; 115:175–187.

    Article  PubMed  CAS  Google Scholar 

  155. Cavigelli SA, Monfort SL, Whitney TK, Mechref YS, Novotny M, McClintock MK. Frequent serial fecal corticoid measures from rats reflect circadian and ovarian corticosterone rhythms. J Endocrinol 2005; 184:153–163.

    Article  PubMed  CAS  Google Scholar 

  156. Rhodes RD, Harrison DW, Demaree HA. Hostility as a moderator of physical reactivity and recovery to stress. Int J Neurosci 2002; 112:1671–1686.

    Article  Google Scholar 

  157. Viau V, Meaney MJ. Variations in the hypothalamic-pituitary-adrenal response to stress during the estrous cycle in the rat. Endocrinology 1991; 129:2503–2511.

    Article  PubMed  CAS  Google Scholar 

  158. Figueiredo HF, Dolgas CM, Herman JP. Stress activation of cortex and hippocampus is modulated by sex and stage of estrus. Endocrinology 2002; 143:2534–2540.

    Article  PubMed  CAS  Google Scholar 

  159. Bitran D, Dugan M, Renda P, Ellis R, Foley M. Anxiolytic effects of the neuroactive steroid pregnanolone (31-OH-5–pregnan-20-one) after microinjection in the dorsal hippocampus and lateral septum. Brain Res 1999; 850:217–224.

    Article  PubMed  CAS  Google Scholar 

  160. Godsil BP, Blackmore MA, Fanselow MS. Modulation of an activity response with associative and nonassociative fear in the rat: a lighting differential influences the form of defensive behavior evoked after fear conditioning. Learn Behav 2005; 33:454–463.

    PubMed  Google Scholar 

  161. McHugh EM, Zhu W, Milgram S, Mager S. The GABA transporter GAT1 and the MAGUK protein Pals1: interaction, uptake modulation, and coexpression in the brain. Mol Cell Neurosci 2004; 26:406–417.

    Article  PubMed  CAS  Google Scholar 

  162. Frye CA, Walf AA, Petralia SM. In the ventral tegmental area, progestins have actions at D1 receptors for lordosis of hamsters and rats that involve GABAA receptors. Horm Behav 2006; 50:332–337.

    Article  PubMed  CAS  Google Scholar 

  163. Frye CA, Rhodes ME. Infusions of 5α-pregnan-3α–ol-20-one (3α,5α-THP) to the ventral tegmental area, but not the substantia nigra, enhance exploratory, anti-anxiety, social and sexual behaviours and concomitantly increase 3α,5α-THP concentrations in the hippocampus, diencephalon and cortex of ovariectomised oestrogen-primed rats. J Neuroendocrinol 2006; 18:960–975.

    Article  PubMed  CAS  Google Scholar 

  164. Shirayama Y, Hashimoto K, Suzuki Y, Higuchi T. Correlation of plasma neurosteroid levels to the severity of negative symptoms in male patients with schizophrenia. Schizophr Res 2002; 58:69–74.

    Article  PubMed  Google Scholar 

  165. Frye CA. Progestins influence motivation, reward, conditioning, stress, and/or response to drugs of abuse. Pharmacol Biochem Behav 2007; 86:209–219.

    Article  PubMed  CAS  Google Scholar 

  166. Al-Amin HA, Weinberger DR, Lipska BK. Exaggerated MK-801-induced motor hyperactivity in rats with the neonatal lesion of the ventral hippocampus. Behav Pharmacol 2000; 11:269–278.

    PubMed  CAS  Google Scholar 

  167. Andreasen PA. Changes in net charge of glucocorticoid receptors by activation, and evidence for a biphasic activation kinetics. Mol Cell Endocrinol 1982; 28:563–586.

    Article  PubMed  CAS  Google Scholar 

  168. Bachevalier J, Beauregard M, Alvarado MC. Long-term effects of neonatal damage to the hippocampal formation and amygdaloid complex on object discrimination and object recognition in rhesus monkeys (Macaca mulatta). Behav Neurosci 1999; 113:1127–1151.

    Article  PubMed  CAS  Google Scholar 

  169. Barbazanges A, Piazza PV, Le Moal M, Maccari S. Maternal glucocorticoid secretion mediates long-term effects of prenatal stress. J Neurosci 1996; 16:3943–3949.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, B.V

About this chapter

Cite this chapter

Frye, C.A., Rhodes, M.E. (2008). The Role of Midbrain 3α,5α-THP in Mediating Exploration, Anxiety, Social, and Reproductive Behavior. In: Ritsner, M.S., Weizman, A. (eds) Neuroactive Steroids in Brain Function, Behavior and Neuropsychiatric Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6854-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6854-6_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6853-9

  • Online ISBN: 978-1-4020-6854-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics