Skip to main content

DHEA and DHEA-S, and their Functions in the Brain and Adrenal Medulla

  • Chapter

Produced by the adrenal glands and the brain, neuroactive steroids dehydroepiandrosterone and its sulfate ester – DHEA and DHEA-S – are the most abundant hormones in the human body. DHEA and DHEA-S are known to exert major physiological and pathological effects on cognitive functions and memory. Interestingly, DHEA and DHEA-S levels gradually decline during aging; this decrease has been associated with neuronal degeneration processes and dysfunction. Moreover, DHEA has recently been identified as a regulator in neuronal stem cell proliferation. In animal models, DHEA has shown protective properties against a variety of diseases including obesity, diabetes, immune disorders, atherosclerosis and cancer. There is some evidence of the beneficial effects of DHEA in patients with adrenal insufficiency. However, the exact effects of DHEA and DHEA-S on brain and adrenomedullary function and the signaling pathways mediating these effects are not fully understood. Recent studies have provided evidence that DHEA can act via G- protein-associated, membrane-bound receptors, and that DHEA acts as a gamma-aminobutyric acid type A (GABAA) antagonist. Moreover, these steroids are able to potentiate glutamate action in neuronal cells. Additional studies are needed to develop a more complete picture of DHEA and DHEA-S functions in human physiology and pathology.

Keywords

  • Dehydroepiadrosterone
  • neuroactive steroids
  • brain and adrenomedullary function

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4020-6854-6_12
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-6854-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Suzuki M, Wright LS, Marwah P, Lardy HA, Svendsen CN. Mitotic and neurogenic effects of dehydroepiandrosterone (DHEA) on human neural stem cell cultures derived from the fetal cortex. Proc Natl Acad Sci USA 2004; 101:3202–3207.

    PubMed  CrossRef  CAS  Google Scholar 

  2. Kimonides VG, Khatibi NH, Svendsen CN, Sofroniew MV, Herbert J. Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEA-S) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity. Proc Natl Acad Sci USA 1998; 95:1852–1857.

    PubMed  CrossRef  CAS  Google Scholar 

  3. Karishma KK, Herbert J. Dehydroepiandrosterone (DHEA) stimulates neurogenesis in the hippocampus of the rat, promotes survival of newly formed neurons and prevents corticosterone-induced suppression. Eur J Neurosci 2002; 16:445–453.

    PubMed  CrossRef  CAS  Google Scholar 

  4. Charalampopoulos I, Tsatsanis C, Dermitzaki E, Alexaki VI, Castanas E, Margioris AN, Gravanis A. Dehydroepiandrosterone and allopregnanolone protect sympathoadrenal medulla cells against apoptosis via antiapoptotic Bcl-2 proteins. Proc Natl Acad Sci USA 2004; 101:8209–8214.

    PubMed  CrossRef  CAS  Google Scholar 

  5. Rosenfeld RS, Rosenberg BJ, Hellman L. Direct analysis of dehydroisoandrosterone in plasma. Steroids 1975; 25:799–805.

    PubMed  CrossRef  CAS  Google Scholar 

  6. Burger HG. Androgen production in women. Fertil Steril 2002; 77(Suppl 4):S3–S5.

    PubMed  CrossRef  Google Scholar 

  7. Kroboth PD, Salek FS, Pittenger AL, Fabian TJ, Frye RF. DHEA and DHEA-S: a review. J Clin Pharmacol 1999; 39:327–348.

    PubMed  CrossRef  CAS  Google Scholar 

  8. Corpechot C, Baulieu EE, Robel P. Testosterone, dihydrotestosterone and androstanediols in plasma, testes and prostates of rats during development. Acta Endocrinol (Copenh) 1981; 96:127–135.

    CAS  Google Scholar 

  9. Rainey WE, Parker CR, Jr., Rehman K, Carr BR. The adrenal genetic puzzle: how do the fetal and adult pieces differ? Endocr Res 2002; 28:611–622.

    PubMed  CrossRef  CAS  Google Scholar 

  10. Rainey WE, Carr BR, Sasano H, Suzuki T, Mason JI. Dissecting human adrenal androgen production. Trends Endocrinol Metab 2002; 13:234–239.

    PubMed  CrossRef  CAS  Google Scholar 

  11. Campbell B. Adrenarche and the evolution of human life history. Am J Hum Biol 2006; 18:569–589.

    PubMed  CrossRef  Google Scholar 

  12. Auchus RJ, Rainey WE. Adrenarche–physiology, biochemistry and human disease. Clin Endocrinol (Oxf) 2004; 60:288–296.

    CrossRef  CAS  Google Scholar 

  13. Chen F, Knecht K, Birzin E, Fisher J, Wilkinson H, Mojena M, Moreno CT, Schmidt A, Harada S, Freedman LP, Reszka AA. Direct agonist/antagonist functions of dehydroepiandrosterone. Endocrinology 2005; 146:4568–4576.

    PubMed  CrossRef  CAS  Google Scholar 

  14. Sicard F, Ehrhart-Bornstein M, Corbeil D, Sperber S, Krug AW, Ziegler CG, Rettori V, McCann SM, Bornstein SR. Age-dependent regulation of chromaffin cell proliferation by growth factors, dehydroepiandrosterone (DHEA), and DHEA sulfate. Proc Natl Acad Sci USA 2007; 104:2007–2012.

    PubMed  CrossRef  CAS  Google Scholar 

  15. Charalampopoulos I, Dermitzaki E, Vardouli L, Tsatsanis C, Stournaras C, Margioris AN, Gravanis A. Dehydroepiandrosterone sulfate and allopregnanolone directly stimulate catecholamine production via induction of tyrosine hydroxylase and secretion by affecting actin polymerization. Endocrinology 2005; 146(8):3309–3318 (epub 2005 April 28)

    PubMed  CrossRef  CAS  Google Scholar 

  16. Huber K, Combs S, Ernsberger U, Kalcheim C, Unsicker K. Generation of neuroendocrine chromaffin cells from sympathoadrenal progenitors: beyond the glucocorticoid hypothesis. Ann NY Acad Sci 2002; 971:554–559.

    PubMed  CrossRef  CAS  Google Scholar 

  17. Finotto S, Krieglstein K, Schober A, Deimling F, Lindner K, Bruhl B, Beier K, Metz J, Garcia-Arraras JE, Roig-Lopez JL, Monaghan P, Schmid W, Cole TJ, Kellendonk C, Tronche F, Schutz G, Unsicker K. Analysis of mice carrying targeted mutations of the glucocorticoid receptor gene argues against an essential role of glucocorticoid signalling for generating adrenal chromaffin cells. Development 1999; 126:2935–2944.

    PubMed  CAS  Google Scholar 

  18. Baulieu EE. Neurosteroids: of the nervous system, by the nervous system, for the nervous system. Recent Prog Horm Res 1997; 52:1–32.

    PubMed  CAS  Google Scholar 

  19. Corpechot C, Robel P, Axelson M, Sjovall J, Baulieu EE. Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc Natl Acad Sci USA 1981; 78:4704–4707.

    PubMed  CrossRef  CAS  Google Scholar 

  20. Cheney DL, Uzunov D, Costa E, Guidotti A. Gas chromatographic-mass fragmentographic quantitation of 3 alpha-hydroxy-5 alpha-pregnan-20-one (allopregnanolone) and its precursors in blood and brain of adrenalectomized and castrated rats. J Neurosci 1995; 15:4641–4650.

    PubMed  CAS  Google Scholar 

  21. Mellon SH, Griffin LD, Compagnone NA. Biosynthesis and action of neurosteroids. Brain Res Brain Res Rev 2001; 37:3–12.

    PubMed  CrossRef  CAS  Google Scholar 

  22. Plassart-Schiess E, Baulieu EE. Neurosteroids: recent findings. Brain Res Brain Res Rev 2001; 37:133–140.

    PubMed  CrossRef  CAS  Google Scholar 

  23. Baulieu EE, Robel P, Schumacher M. Neurosteroids: beginning of the story. Int Rev Neurobiol 2001; 46:1–32.

    PubMed  CrossRef  CAS  Google Scholar 

  24. Mellon SH, Vaudry H. Biosynthesis of neurosteroids and regulation of their synthesis. Int Rev Neurobiol 2001; 46:33–78.

    PubMed  CrossRef  CAS  Google Scholar 

  25. Roberts E, Bologa L, Flood JF, Smith GE. Effects of dehydroepiandrosterone and its sulfate on brain tissue in culture and on memory in mice. Brain Res 1987; 406:357–362.

    PubMed  CrossRef  CAS  Google Scholar 

  26. Compagnone NA, Mellon SH. Dehydroepiandrosterone: a potential signalling molecule for neocortical organization during development. Proc Natl Acad Sci USA 1998; 95:4678–4683.

    PubMed  CrossRef  CAS  Google Scholar 

  27. Gibbs TT, Russek SJ, Farb DH. Sulfated steroids as endogenous neuromodulators. Pharmacol Biochem Behav 2006; 84:555–567.

    PubMed  CrossRef  CAS  Google Scholar 

  28. Veiga S, Garcia-Segura LM, Azcoitia I. Neuroprotection by the steroids pregnenolone and dehydroepiandrosterone is mediated by the enzyme aromatase. J Neurobiol 2003; 56:398–406.

    PubMed  CrossRef  CAS  Google Scholar 

  29. Lapchak PA, Chapman DF, Nunez SY, Zivin JA. Dehydroepiandrosterone sulfate is neuroprotective in a reversible spinal cord ischemia model: possible involvement of GABA(A) receptors. Stroke 2000; 31:1953–1956; discussion 1957.

    Google Scholar 

  30. Khalil A, Fortin JP, LeHoux JG, Fulop T. Age-related decrease of dehydroepiandrosterone concentrations in low density lipoproteins and its role in the susceptibility of low density lipoproteins to lipid peroxidation. J Lipid Res 2000; 41:1552–1561.

    PubMed  CAS  Google Scholar 

  31. Cyr M, Calon F, Morissette M, Grandbois M, Di Paolo T, Callier S. Drugs with estrogen-like potency and brain activity: potential therapeutic application for the CNS. Curr Pharm Des 2000; 6:1287–1312.

    PubMed  CrossRef  CAS  Google Scholar 

  32. Rao ML, Kolsch H. Effects of estrogen on brain development and neuroprotection–implications for negative symptoms in schizophrenia. Psychoneuroendocrinology 2003; 28(Suppl 2):83–96.

    PubMed  CrossRef  CAS  Google Scholar 

  33. Azcoitia I, Sierra A, Veiga S, Honda S, Harada N, Garcia-Segura LM. Brain aromatase is neuroprotective. J Neurobiol 2001; 47:318–329.

    PubMed  CrossRef  CAS  Google Scholar 

  34. Jellinck PH, Lee SJ, McEwen BS. Metabolism of dehydroepiandrosterone by rat hippocampal cells in culture: possible role of aromatization and 7-hydroxylation in neuroprotection. J Steroid Biochem Mol Biol 2001; 78:313–317.

    PubMed  CrossRef  CAS  Google Scholar 

  35. Morfin R, Starka L. Neurosteroid 7-hydroxylation products in the brain. Int Rev Neurobiol 2001; 46:79–95.

    PubMed  CrossRef  CAS  Google Scholar 

  36. Compagnone NA, Mellon SH. Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 2000; 21:1–56.

    PubMed  CrossRef  CAS  Google Scholar 

  37. Rigaud AS, Pellerin J. Neuropsychic effects of dehydroepiandrosterone. Ann Med Interne (Paris) 2001; 152(Suppl 3):IS43–49.

    Google Scholar 

  38. Barrett-Connor E, von Muhlen D, Laughlin GA, Kripke A. Endogenous levels of dehydroepiandrosterone sulfate, but not other sex hormones, are associated with depressed mood in older women: the Rancho Bernardo study. J Am Geriatr Soc 1999; 47:685–691.

    PubMed  CAS  Google Scholar 

  39. Berr C, Lafont S, Debuire B, Dartigues JF, Baulieu EE. Relationships of dehydroepiandrosterone sulfate in the elderly with functional, psychological, and mental status, and short-term mortality: a French community-based study. Proc Natl Acad Sci USA 1996; 93:13410–13415.

    PubMed  CrossRef  CAS  Google Scholar 

  40. Wolkowitz OM, Reus VI, Keebler A, Nelson N, Friedland M, Brizendine L, Roberts E. Double-blind treatment of major depression with dehydroepiandrosterone. Am J Psychiatry 1999; 156:646–649.

    PubMed  CAS  Google Scholar 

  41. Yaffe K, Ettinger B, Pressman A, Seeley D, Whooley M, Schaefer C, Cummings S. Neuropsychiatric function and dehydroepiandrosterone sulfate in elderly women: a prospective study. Biol Psychiatry 1998; 43:694–700.

    PubMed  CrossRef  CAS  Google Scholar 

  42. Arlt W, Callies F, van Vlijmen JC, Koehler I, Reincke M, Bidlingmaier M, Huebler D, Oettel M, Ernst M, Schulte HM, Allolio B. Dehydroepiandrosterone replacement in women with adrenal insufficiency. N Engl J Med 1999; 341:1013–1020.

    PubMed  CrossRef  CAS  Google Scholar 

  43. Rabkin JG, Ferrando SJ, Wagner GJ, Rabkin R. DHEA treatment for HIV + patients: effects on mood, androgenic and anabolic parameters. Psychoneuroendocrinology 2000; 25:53–68.

    PubMed  CrossRef  CAS  Google Scholar 

  44. Arlt W. Dehydroepiandrosterone and ageing. Best Pract Res Clin Endocrinol Metab 2004; 18:363–380.

    PubMed  CrossRef  CAS  Google Scholar 

  45. Gayosso V, Montano LF, Lopez-Marure R. DHEA-induced antiproliferative effect in MCF-7 cells is androgen- and estrogen receptor-independent. Cancer J 2006; 12:160–165.

    PubMed  CAS  Google Scholar 

  46. Liu S, Ishikawa H, Li FJ, Ma Z, Otsuyama K, Asaoku H, Abroun S, Zheng X, Tsuyama N, Obata M, Kawano MM. Dehydroepiandrosterone can inhibit the proliferation of myeloma cells and the interleukin-6 production of bone marrow mononuclear cells from patients with myeloma. Cancer Res 2005; 65:2269–2276.

    PubMed  CrossRef  CAS  Google Scholar 

  47. Eich DM, Nestler JE, Johnson DE, Dworkin GH, Ko D, Wechsler AS, Hess ML. Inhibition of accelerated coronary atherosclerosis with dehydroepiandrosterone in the heterotopic rabbit model of cardiac transplantation. Circulation 1993; 87:261–269.

    PubMed  CAS  Google Scholar 

  48. Butcher SK, Lord JM. Stress responses and innate immunity: aging as a contributory factor. Aging Cell 2004; 3:151–160.

    PubMed  CrossRef  CAS  Google Scholar 

  49. Gutierrez G, Mendoza C, Zapata E, Montiel A, Reyes E, Montano LF, Lopez-Marure R. Dehydroepiandrosterone inhibits the TNF-alpha-induced inflammatory response in human umbilical vein endothelial cells. Atherosclerosis 2007; 190:90–99.

    PubMed  CrossRef  CAS  Google Scholar 

  50. Sakakura Y, Nakagawa Y, Ohzeki T. Differential effect of DHEA on mitogen-induced proliferation of T and B lymphocytes. J Steroid Biochem Mol Biol 2006; 99:115–120.

    PubMed  CrossRef  CAS  Google Scholar 

  51. Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 1986; 232:1004–1007.

    PubMed  CrossRef  CAS  Google Scholar 

  52. Monnet FP, Maurice T. The sigma1 protein as a target for the non-genomic effects of neuro(active) steroids: molecular, physiological, and behavioral aspects. J Pharmacol Sci 2006; 100:93–118.

    PubMed  CrossRef  CAS  Google Scholar 

  53. Iruthayanathan M, Zhou YH, Childs GV. Dehydroepiandrosterone restoration of growth hormone gene expression in aging female rats, in vivo and in vitro: evidence for actions via estrogen receptors. Endocrinology 2005; 146:5176–5187.

    PubMed  CrossRef  CAS  Google Scholar 

  54. Labrie F, Belanger A, Luu-The V, Labrie C, Simard J, Cusan L, Gomez JL, Candas B. DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: its role during aging. Steroids 1998; 63:322–328.

    PubMed  CrossRef  CAS  Google Scholar 

  55. Dong LY, Cheng ZX, Fu YM, Wang ZM, Zhu YH, Sun JL, Dong Y, Zheng P. Neurosteroid dehydroepiandrosterone sulfate enhances spontaneous glutamate release in rat prelimbic cortex through activation of dopamine D1 and sigma-1 receptor. Neuropharmacology 2007; 52:966–974.

    PubMed  CrossRef  CAS  Google Scholar 

  56. Monnet FP, Mahe V, Robel P, Baulieu EE. Neurosteroids, via sigma receptors, modulate the [3H]norepinephrine release evoked by N-methyl-D-aspartate in the rat hippocampus. Proc Natl Acad Sci USA 1995; 92:3774–3778.

    PubMed  CrossRef  CAS  Google Scholar 

  57. Liu D, Ren M, Bing X, Stotts C, Deorah S, Love-Homan L, Dillon JS. Dehydroepiandrosterone inhibits intracellular calcium release in beta-cells by a plasma membrane-dependent mechanism. Steroids 2006; 71:691–699.

    PubMed  CrossRef  CAS  Google Scholar 

  58. Williams MR, Ling S, Dawood T, Hashimura K, Dai A, Li H, Liu JP, Funder JW, Sudhir K, Komesaroff PA. Dehydroepiandrosterone inhibits human vascular smooth muscle cell proliferation independent of ARs and ERs. J Clin Endocrinol Metab 2002; 87:176–181.

    PubMed  CrossRef  CAS  Google Scholar 

  59. Charalampopoulos I, Alexaki VI, Lazaridis I, Dermitzaki E, Avlonitis N, Tsatsanis C, Calogeropoulou T, Margioris AN, Castanas E, Gravanis A. G protein-associated, specific membrane binding sites mediate the neuroprotective effect of dehydroepiandrosterone. FASEB J 2006; 20:577–579.

    PubMed  CAS  Google Scholar 

  60. Flood JF, Morley JE, Roberts E. Memory-enhancing effects in male mice of pregnenolone and steroids metabolically derived from it. Proc Natl Acad Sci USA 1992; 89:1567–1571.

    PubMed  CrossRef  CAS  Google Scholar 

  61. Flood JF, Morley JE, Roberts E. Pregnenolone sulfate enhances post-training memory processes when injected in very low doses into limbic system structures: the amygdala is by far the most sensitive. Proc Natl Acad Sci USA 1995; 92:10806–10810.

    PubMed  CrossRef  CAS  Google Scholar 

  62. Markowski M, Ungeheuer M, Bitran D, Locurto C. Memory-enhancing effects of DHEA-S in aged mice on a win-shift water escape task. Physiol Behav 2001; 72:521–525.

    PubMed  CrossRef  CAS  Google Scholar 

  63. Urani C, Doldi M, Crippa S, Camatini M. Human-derived cell lines to study xenobiotic metabolism. Chemosphere 1998; 37:2785–2795.

    PubMed  CrossRef  CAS  Google Scholar 

  64. Mathis C, Vogel E, Cagniard B, Criscuolo F, Ungerer A. The neurosteroid pregnenolone sulfate blocks deficits induced by a competitive NMDA antagonist in active avoidance and lever-press learning tasks in mice. Neuropharmacology 1996; 35:1057–1064.

    PubMed  CrossRef  CAS  Google Scholar 

  65. Meziane H, Mathis C, Paul SM, Ungerer A. The neurosteroid pregnenolone sulfate reduces learning deficits induced by scopolamine and has promnestic effects in mice performing an appetitive learning task. Psychopharmacology (Berl) 1996; 126:323–330.

    CrossRef  CAS  Google Scholar 

  66. Maurice T, Junien JL, Privat A. Dehydroepiandrosterone sulfate attenuates dizocilpine-induced learning impairment in mice via sigma 1-receptors. Behav Brain Res 1997; 83:159–164.

    PubMed  CrossRef  CAS  Google Scholar 

  67. Weaver CE, Jr., Marek P, Park-Chung M, Tam SW, Farb DH. Neuroprotective activity of a new class of steroidal inhibitors of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 1997; 94:10450–10454.

    PubMed  CrossRef  CAS  Google Scholar 

  68. Weaver CE, Land MB, Purdy RH, Richards KG, Gibbs TT, Farb DH. Geometry and charge determine pharmacological effects of steroids on N-methyl-D-aspartate receptor-induced Ca(2+) accumulation and cell death. J Pharmacol Exp Ther 2000; 293:747–754.

    PubMed  CAS  Google Scholar 

  69. Sadri-Vakili G, Johnson DW, Janis GC, Gibbs TT, Pierce RC, Farb DH. Inhibition of NMDA-induced striatal dopamine release and behavioral activation by the neuroactive steroid 3alpha-hydroxy-5beta-pregnan-20-one hemisuccinate. J Neurochem 2003; 86:92–101.

    PubMed  CrossRef  CAS  Google Scholar 

  70. Miller WL. Androgen biosynthesis from cholesterol to DHEA. Mol Cell Endocrinol 2002; 198:7–14.

    PubMed  CrossRef  CAS  Google Scholar 

  71. Arlt W, Hewison M. Hormones and immune function: implications of aging. Aging Cell 2004; 3:209–216.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer Science + Business Media, B.V

About this chapter

Cite this chapter

Krug, A.W., Ziegler, C.G., Bornstein, S.R. (2008). DHEA and DHEA-S, and their Functions in the Brain and Adrenal Medulla. In: Ritsner, M.S., Weizman, A. (eds) Neuroactive Steroids in Brain Function, Behavior and Neuropsychiatric Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6854-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6854-6_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6853-9

  • Online ISBN: 978-1-4020-6854-6

  • eBook Packages: MedicineMedicine (R0)