Skip to main content

Fullerenes as Photosensitizers in Photodynamic Therapy

  • Chapter

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 1))

Abstract

Fullerenes are a class of closed-cage nanomaterials made exclusively from carbon atoms. A great deal of attention has been focused on developing medical uses of these unique molecules especially when they are derivatized with functional groups to make them soluble and therefore able to interact with biological systems. Due to their extended π-conjugation they absorb visible light, have a high triplet yield and can generate reactive oxygen species (ROS) upon illumination, suggesting a possible role of fullerenes in photodynamic therapy (PDT). Depending on the functional groups introduced into the molecule, fullerenes can effectively photoinactivate either or both pathogenic microbial cells and malignant cancer cells. The mechanism appears to involve Superoxide anion as well as singlet oxygen, and under the right conditions fullerenes may have advantages over clinically applied photosensitizers (PSs) for mediating photodynamic therapy of certain diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agostinis P, Vantieghem A, Merlevede W, de Witte PA (2002) Hypericin in cancer treatment: more light on the way. Int J Biochem Cell Biol 34:221-41.

    Google Scholar 

  • Agostinis P, Buytaert E, Breyssens H, Hendrickx N (2004) Regulatory pathways in photodynamic therapy induced apoptosis. Photochem Photobiol Sci 3:721-729.

    Google Scholar 

  • Alvarez MG, Prucca C, Milanesio ME, Durantini EN, Rivarola V (2006) Photodynamic activity of a new sensitizer derived from porphyrin-C60 dyad and its biological consequences in a human carcinoma cell line. Int J Biochem Cell Biol 38:2092-2101.

    Google Scholar 

  • An YZ, Chen CB, Anderson JL, Sigman DS, Foote CS, Rubin Y (1996) Sequence-specific modi-fication of guanosine in DNA by a C60-linked deoxyoligonucleotide: evidence for a non-singlet oxygen mechanism. Tetrahedron 52:5179-5189.

    Google Scholar 

  • Arbogast JW, Darmanyan AP, Foote CS, Rubin Y, Diederich FN, Alvarez MM, Anz SJ, Whetten RL (1991a) Photophysical properties of C60. J Phys Chem A 95:11-12.

    Google Scholar 

  • Arbogast JW, Darmanyan AP, Foote CS, Rubin Y, Diederich FN, Alvarez MM, Anz SJ, Whetten RL (1991b) Photophysical properties of C60. J Phys Chem A Mol Spectrosc Kinet Environ Gen Theory 95:11-12.

    Google Scholar 

  • Arbogast JW, Foote CS, Kao M (1992) Electron-transfer to triplet C-60. J Am Chem Soc 114:2277-2279.

    Google Scholar 

  • Bachowski GJ, Pintar TJ, Girotti AW (1991) Photosensitized lipid peroxidation and enzyme inactivation by membrane-bound merocyanine 540: reaction mechanisms in the absence and presence of ascorbate. Photochem Photobiol 53:481-491.

    Google Scholar 

  • Bachowski GJ, Korytowski W, Girotti AW (1994) Characterization of lipid hydroperoxides generated by photodynamic treatment of leukemia cells. Lipids 29:449-459.

    Google Scholar 

  • Bagno A, Claeson S, Maggini M, Martini ML, Prato M, Scorrano G (2002) [60]Fullerene as a substituent. Chemistry 8:1015-1023.

    Google Scholar 

  • Belgorodsky B, Fadeev L, Kolsenik J, Gozin M (2006) Formation of a soluble stable complex between pristine C60-fullerene and a native blood protein. Chembiochem 7:1783-1789.

    Google Scholar 

  • Belousova IM, Mironova NG, Yur’ev MS (2005) A mathematical model of the photodynamic fullerene-oxygen action on biological tissues. Optic Spectrosc 98:349-356.

    Google Scholar 

  • Bilski P, Motten AG, Bilska M, Chignell CF (1993) The photooxidation of diethylhydroxylamine by rose bengal in micellar and nonmicellar aqueous solutions. Photochem Photobiol 58:11-18.

    Google Scholar 

  • Bosi S, Da Ros T, Spalluto G, Prato M (2003) Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 38:913-923.

    Google Scholar 

  • Bottiroli G, Croce AC, Balzarini P, Locatelli D, Baglioni P, Lo Nostro P, Monici M, Pratesi R (1997) Enzyme-assisted cell photosensitization: a proposal for an efficient approach to tumor therapy and diagnosis. The rose bengal fluorogenic substrate. Photochem Photobiol 66:374-383.

    Google Scholar 

  • Boutorine AS, Tokuyama H, Takasugi M, Isobe H, Nkamura E, Helene C (1994) Fullerene-oligonucleotide conjugates: photo-induced sequence-specific DNA cleavage. Angew Chem Int Ed Engl 33:2462-2465.

    Google Scholar 

  • Buchko GW, Cadet J, Ravanat JL, Labataille P (1993) Isolation and characterization of a new product produced by ionizing irradiation and type I photosensitization of 2′-deoxyguanosine in oxygen-saturated aqueous solution: (2S)-2,5′-ANHYDRO-1-(2′-deoxy-beta-D-erythro-pentofuranosyl)-5-guanidin ylidene-2-hydroxy-4-oxoimidazolidine. Int J Radiat Biol 63:669-76.

    Google Scholar 

  • Buchko GW, Wagner JR, Cadet J, Raoul S, Weinfeld M (1995) Methylene blue-mediated photo-oxidation of 7,8-dihydro-8-oxo-2′-deoxyguanosine. Biochim Biophys Acta 1263:17-24.

    Google Scholar 

  • Burlaka AP, Sidorik YP, Prylutska SV, Matyshevska OP, Golub OA, Prylutskyy YI, Scharff P (2004) Catalytic system of the reactive oxygen species on the C60 fullerene basis. Exp Oncol 26:326-327.

    Google Scholar 

  • Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one - photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 1:279-293.

    Google Scholar 

  • Castano AP, Demidova TN, Hamblin MR (2005) Mechanisms in photodynamic therapy: part two - cellular signalling, cell metabolism and modes of cell death. Photodiagn Photodyn Ther 2:1-23.

    Google Scholar 

  • Davydenko MO, Radchenko EO, Yashchuk VM, Dmitruk IM, Prylutskyy YI, Matishevska OP, Golub AA (2006) Sensibilization of fullerene C60 immobilized at silica nanoparticles for can-cer photodynamic therapy. J Molec Liq 127:145-147.

    Google Scholar 

  • Demidova TN, Hamblin MR (2004) Photodynamic therapy targeted to pathogens. Int J Immunopathol Pharmacol 17:245-254.

    Google Scholar 

  • Demidova TN, Hamblin MR (2005) Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother 49:2329-2335.

    Google Scholar 

  • Detty MR, Gibson SL, Wagner SJ (2004) Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem 47:3897-3915.

    Google Scholar 

  • Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380-387.

    Google Scholar 

  • Fingar VH, Wieman TJ, Karavolos PS, Doak KW, Ouellet R, van Lier JE (1993) The effects of photodynamic therapy using differently substituted zinc phthalocyanines on vessel constric-tion, vessel leakage and tumor response. Photochem Photobiol 58:251-258.

    Google Scholar 

  • Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C (2002) Cellular locali-sation of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294:116-119.

    Google Scholar 

  • Foote CS (1991) Definition of Type-I and Type-II photosensitized oxidation. Photochem Photobiol 54:659-659.

    Google Scholar 

  • Foote CS (1994) Photophysical and photochemical properties of fullerenes. Top Curr Chem 169:347-363.

    Google Scholar 

  • Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5:2578-2585.

    Google Scholar 

  • Girotti AW (1983) Mechanisms of photosensitization. Photochem Photobiol 38:745-51.

    Google Scholar 

  • Girotti AW (1985) Mechanisms of lipid peroxidation. J Free Radic Biol Med 1:87-95.

    Google Scholar 

  • Granville DJ, Carthy CM, Jiang H, Shore GC, McManus BM, Hunt DW (1998) Rapid cytochrome c release, activation of caspases 3, 6, 7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy. FEBS Lett 437:5-10.

    Google Scholar 

  • Greer A (2006) Christopher Foote’s discovery of the role of singlet oxygen [1O2 (1Delta g)] in photosensitized oxidation reactions. Acc Chem Res 39:797-804.

    Google Scholar 

  • Grune T, Klotz LO, Gieche J, Rudeck M, Sies H (2001) Protein oxidation and proteolysis by the nonradical oxidants singlet oxygen or peroxynitrite. Free Radic Biol Med 30:1243-1253.

    Google Scholar 

  • Guldi DM, Prato M (2000) Excited-state properties of C(60) fullerene derivatives. Acc Chem Res 33:695-703.

    Google Scholar 

  • Gupta S, Ahmad N, Mukhtar H (1998) Involvement of nitric oxide during phthalocyanine (Pc4) photodynamic therapy-mediated apoptosis. Cancer Res 58:1785-1788.

    Google Scholar 

  • Hahn SM, Putt ME, Metz J, Shin DB, Rickter E, Menon C, Smith D, Glatstein E, Fraker DL, Busch TM (2006) Photofrin uptake in the tumor and normal tissues of patients receiving intra-peritoneal photodynamic therapy. Clin Cancer Res 12:5464-5470.

    Google Scholar 

  • Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? 3:436-450.

    Google Scholar 

  • Hancock RE, Bell A (1988) Antibiotic uptake into gram-negative bacteria. Eur J Clin Microbiol Infect Dis 7:713-720.

    Google Scholar 

  • Hirayama J, Abe H, Kamo N, Shinbo T, Ohnishi-Yamada Y, Kurosawa S, Ikebuchi K, Sekiguchi S (1999) Photoinactivation of vesicular stomatitis virus with fullerene conjugated with methoxy polyethylene glycol amine. Biol Pharm Bull 22:1106-1109.

    Google Scholar 

  • Ikeda A, Doi Y, Hashizume M, Kikuchi J, Konishi T (2007a) An extremely effective DNA photo-cleavage utilizing functionalized liposomes with a fullerene-enriched lipid bilayer. J Am Chem Soc 129:4140-4141.

    Google Scholar 

  • Ikeda A, Doi Y, Nishiguchi K, Kitamura K, Hashizume M, Kikuchi J, Yogo K, Ogawa T, Takeya T (2007b) Induction of cell death by photodynamic therapy with water-soluble lipid-membrane-incorporated [60]fullerene. Org Biomol Chem 5:1158-1160.

    Google Scholar 

  • Irie K, Nakamura Y, Ohigashi H, Tokuyama H, Yamago S, Nakamura E (1996) Photocytotoxicity of water-soluble fullerene derivatives. Biosci Biotechnol Biochem 60:1359-1361.

    Google Scholar 

  • Isobe H, Nakanishi W, Tomita N, Jinno S, Okayama H, Nakamura E (2006) Nonviral gene delivery by tetraamino fullerene. Mol Pharm 3:124-34.

    Google Scholar 

  • Jensen AW, Wilson SR, Schuster DI (1996) Biological applications of fullerenes. Bioorg Med Chem 4:767-779.

    Google Scholar 

  • Kamat JP, Devasagayam TP, Priyadarsini KI, Mohan H, Mittal JP (1998) Oxidative damage induced by the fullerene C60 on photosensitization in rat liver microsomes. Chem Biol Interact 114:145-159.

    Google Scholar 

  • Kamat JP, Devasagayam TP, Priyadarsini KI, Mohan H (2000) Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicol 155:55-61.

    Google Scholar 

  • Kasermann F, Kempf C (1997) Photodynamic inactivation of enveloped viruses by buckminster-fullerene. Antiviral Res 34:65-70.

    Google Scholar 

  • Kasermann F, Kempf C (1998) Buckminsterfullerene and photodynamic inactivation of viruses. Rev Med Virol 8:143-151.

    Google Scholar 

  • Kessel D (1982) Components of hematoporphyrin derivatives and their tumor-localizing capacity. Cancer Res 42:1703-1706.

    Google Scholar 

  • Kessel D (1986) Photosensitization with derivatives of haematoporphyrin. [Review]. Int J Radiat Biol Relat Stud Phys Chem Med 49:901-907.

    Google Scholar 

  • Kessel D (1989a) On the purity and definition of oligomeric HPD formulations. J Photochem Photobiol B 3:637-638.

    Google Scholar 

  • Kessel D (1989b) Probing the structure of HPD by fluorescence spectroscopy. Photochem Photobiol 50:345-350.

    Google Scholar 

  • Kessel D, Thompson P (1987) Purification and analysis of hematoporphyrin and hematoporphyrin derivative by gel exclusion and reverse-phase chromatography. Photochem Photobiol 46:1023-1025.

    Google Scholar 

  • Kessel D, Thompson P, Musselman B, Chang CK (1987a) Chemistry of hematoporphyrin-derived photosensitizers. Photochem Photobiol 46:563-568.

    Google Scholar 

  • Kessel D, Thompson P, Musselman B, Chang CK (1987b) Probing the structure and stability of the tumor-localizing derivative of hematoporphyrin by reductive cleavage with LiAlH4. Cancer Res 47:4642-4645.

    Google Scholar 

  • Kessel D, Luo Y, Mathieu P, Reiners JJ (2000) Determinants of the apoptotic response to lyso-somal photodamage. Photochem Photobiol 71:196-200.

    Google Scholar 

  • Koeppe R, Sariciftci NS (2006) Photoinduced charge and energy transfer involving fullerene derivatives. Photochem Photobiol Sci 5:1122-1131.

    Google Scholar 

  • Kral V, Davis J, Andrievsky A, Kralova J, Synytsya A, Pouckova P, Sessler JL (2002) Synthesis and biolocalization of water-soluble sapphyrins. J Med Chem 45:1073-1078.

    Google Scholar 

  • Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354-356.

    Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162-163.

    Google Scholar 

  • Lambrechts SA, Aalders MC, Langeveld-Klerks DH, Khayali Y, Lagerberg JW (2004) Effect of monovalent and divalent cations on the photoinactivation of bacteria with meso-substituted cationic porphyrins. Photochem Photobiol 79:297-302.

    Google Scholar 

  • Levi N, Hantgan RR, Lively MO, Carroll DL, Prasad GL (2006) C60-Fullerenes: detection of intracellular photoluminescence and lack of cytotoxic effects. J Nanobiotechnology 4:14.

    Google Scholar 

  • Li R, Bounds DJ, Granville D, Ip SH, Jiang H, Margaron P, Hunt DW (2003) Rapid induction of apoptosis in human keratinocytes with the photosensitizer QLT0074 via a direct mitochondrial action. Apoptosis 8:269-275.

    Google Scholar 

  • Liang-Takasaki CJ, Makela PH, Leive L (1982) Phagocytosis of bacteria by macrophages: changing the carbohydrate of lipopolysaccharide alters interaction with complement and macrophages. J Immunol 128:1229-35.

    Google Scholar 

  • Lin YL, Lei HY, Wen YY, Luh TY, Chou CK, Liu HS (2000) Light-independent inactivation of dengue-2 virus by carboxyfullerene C3 isomer. Virology 275:258-262.

    Google Scholar 

  • Liu J, Ohta S, Sonoda A, Yamada M, Yamamoto M, Nitta N, Murata K, Tabata Y (2007) Preparation of PEG-conjugated fullerene containing Gd(3+) ions for photodynamic therapy. J Control Rel 117:104-10.

    Google Scholar 

  • Liu Y, Zhao YL, Chen Y, Liang P, Li L (2005) A water-soluble beta cyclodextrin derivative possessing a fullerene tether as an efficient photodriven DNA-cleavage reagent. Tetrahedron Lett 46:2507 -2511.

    Google Scholar 

  • Ma J, Jiang L (2001) Photogeneration of singlet oxygen (1O2) and free radicals (Sen*-, O2*-) by tetra-brominated hypocrellin B derivative. Free Radic Res 35:767-777.

    Google Scholar 

  • Martin N, Maggini M, Guldi DM (2000) Functionalized Fullerenes. Proceedings of the

    Google Scholar 

  • International Symposium, Vol. 9, The Electrochemical Society, Toronto, Canada.

    Google Scholar 

  • Merchat M, Bertolini G, Giacomini P, Villanueva A, Jori G (1996) Meso-substituted cationic por-phyrins as efficient photosensitizers of gram-positive and gram-negative bacteria. J Photochem Photobiol B 32:153-157.

    Google Scholar 

  • Midden WR, Dahl TA (1992) Biological inactivation by singlet oxygen: distinguishing O2(1 delta g) and O2(1 sigma g+). Biochim Biophys Acta 1117:216-222.

    Google Scholar 

  • Milanesio ME, Alvarez MG, Rivarola V, Silber JJ, Durantini EN (2005) Porphyrin-fullerene C60 dyads with high ability to form photoinduced charge-separated state as novel sensitizers for photodynamic therapy. Photochem Photobiol 81:891-897.

    Google Scholar 

  • Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, Brown SB (1996) Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria. J. Photochem. Photobiol. B 32:159-164.

    Google Scholar 

  • Miyata N, Yamakoshi Y, Nakanishi I (2000) Reactive species responsible for biological actions of photoexcited fullerenes. J Pharm Soc Jpn 120:1007-1016.

    Google Scholar 

  • Moan J, Berg K (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 53:549-553.

    Google Scholar 

  • Mroz P, Pawlak A, Satti M, Lee H, Wharton T, Gali H, Sarna T, Hamblin MR (2007a) Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism. Free Radic Biol Med 43:711-9.

    Google Scholar 

  • Mroz P, Pawlak A, Satti M, Lee H, Wharton T, Gali H, Sarna T, Hamblin MR (2007b) Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism. Free Radical Biol Med 43:711-719.

    Google Scholar 

  • Mroz P, Tegos GP, Gali H, Wharton T, Sarna T, Hamblin MR (2007c) Photodynamic therapy with fullerenes. Photochem Photobiol Sci 6:1139-1149.

    Google Scholar 

  • Nakamura E, Isobe H (2003) Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc Chem Res 36:807-815.

    Google Scholar 

  • Nakanishi I, Fukuzumi S, Konishi T, Ohkubo K, Fujitsuka M, Ito O, Miyata N (2001) In: Kamat PV, Guldi DM, and Kadish DM (eds.) Fullerenes for the new millennium, The Electrochemical Society, Pennigton, NJ, X1, Toronto, Canada, pp. 138-151.

    Google Scholar 

  • Ochsner M (1997) Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol B 39:1-18.

    Google Scholar 

  • Pantarotto D, Tagmatarchis N, Bianco A, Prato M (2004) Synthesis and biological properties of fullerene-containing amino acids and peptides. Mini Rev Med Chem 4:805-814.

    Google Scholar 

  • Peng Q, Moan J, Nesland JM, Rimington C (1990) Aluminum phthalocyanines with asymmetrical lower sulfonation and with symmetrical higher sulfonation: a comparison of localizing and photosensitizing mechanism in human tumor LOX xenografts. Int J Cancer 46:719-26.

    Google Scholar 

  • Porter AE, Gass M, Muller K, Skepper JN, Midgley P, Welland M (2007) Visualizing the uptake of C60 to the cytoplasm and nucleus of human monocyte-derived macrophage cells using energy-filtered transmission electron microscopy and electron tomography. Environ Sci Technol 41:3012-7.

    Google Scholar 

  • Rancan F, Rosan S, Boehm F, Cantrell A, Brellreich M, Schoenberger H, Hirsch A, Moussa F (2002) Cytotoxicity and photocytotoxicity of a dendritic C(60) mono-adduct and a malonic acid C(60) tris-adduct on Jurkat cells. J Photochem Photobiol B 67:157-162.

    Google Scholar 

  • Rancan F, Helmreich M, Molich A, Jux N, Hirsch A, Roder B, Witt C, Bohm F (2005) Fullerene-pyropheophorbide a complexes as sensitizer for photodynamic therapy: uptake and photo-induced cytotoxicity on Jurkat cells. J Photochem Photobiol B 80:1-7.

    Google Scholar 

  • Ravanat JL, Cadet J (1995) Reaction of singlet oxygen with 2′-deoxyguanosine and DNA. Isolation and characterization of the main oxidation products. Chem Res Toxicol 8:379-388.

    Google Scholar 

  • Rosenthal I, Murali Krishna C, Riesz P, Ben-Hur E (1986) The role of molecular oxygen in the photodynamic effect of phthalocyanines. Radiat Res 107:136-142.

    Google Scholar 

  • Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26:7587-7595.

    Google Scholar 

  • Schmidt R (2006) Photosensitized generation of singlet oxygen. Photochem Photobiol 82:1161-1177

    Google Scholar 

  • Scrivens WA, Tour JM, Creek KE, Pirisi L (1994) Synthesis of C-14-labeled C-60, its suspension in water, and its uptake by human keratinocytes. J Am Chem Soc 116:4517-4518.

    Google Scholar 

  • Sera N, Tokiwa H, Miyata N (1996) Mutagenicity of the fullerene C60-generated singlet oxygen dependent formation of lipid peroxides. Carcinogenesis 17:2163-2169.

    Google Scholar 

  • Spesia MB, Milanesio ME, Durantini EN (2008) Synthesis, properties and photodynamic inacti-vation of Escherichia coli by novel cationic fullerene C(60) derivatives. Eur J Med Chem 43 (4):853-861.

    Google Scholar 

  • Stockert JC, Juarranz A, Villanueva A, Canete M (1996) Photodynamic damage to HeLa cell microtubules induced by thiazine dyes. Cancer Chemother Pharmacol 39:167-169.

    Google Scholar 

  • Szeimies RM, Karrer S, Abels C, Steinbach P, Fickweiler S, Messmann H, Baumler W, Landthaler M (1996) 9-Acetoxy-2,7,12,17-tetrakis-(beta-methoxyethyl)-porphycene (ATMPn), a novel pho-tosensitizer for photodynamic therapy: uptake kinetics and intracellular localization. J Photochem Photobiol B 34:67-72.

    Google Scholar 

  • Tabata Y, Murakami Y, Ikada Y (1997) Photodynamic effect of polyethylene glycol-modified fullerene on tumor. Jpn J Cancer Res 88:1108-1116.

    Google Scholar 

  • Tagmatarchis N, Shinohara H (2001) Fullerenes in medicinal chemistry and their biological appli-cations. Mini Rev Med Chem 1:339-348.

    Google Scholar 

  • Tegos GP, Demidova TN, Arcila-Lopez D, Lee H, Wharton T, Gali H, Hamblin MR (2005) Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem Biol 12:1127-1135.

    Google Scholar 

  • Tokuyama H, Yamago S, Nakamura E (1993) Photoinduced biochemical activity of fullerene carboxylic acid. J Am Chem Soc 115:7918-7919.

    Google Scholar 

  • Yamakoshi Y, Sueyoshi S, Miyata N (1999) Biological activity of photoexcited fullerene. Bull Natl Inst Health Sci 117:50-60.

    Google Scholar 

  • Yamakoshi Y, Umezawa N, Ryu A, Arakane K, Miyata N, Goda Y, Masumizu T, Nagano T (2003) Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-* versus 1O2. J Am Chem Soc 125:12803-12809.

    Google Scholar 

  • Yamakoshi YN, Yagami T, Sueyoshi S, Miyata N (1996) Acridine Adduct of [60]Fullerene with Enhanced DNA-Cleaving Activity. J Org Chem 61:7236-7237.

    Google Scholar 

  • Yang XL, Fan CH, Zhu HS (2002) Photo-induced cytotoxicity of malonic acid [C(60)]fullerene derivatives and its mechanism. Toxicol In Vitro 16:41-46.

    Google Scholar 

  • Yang XL, Huang C, Qiao XG, Yao L, Zhao DX, Tan X (2007) Photo-induced lipid peroxidation of erythrocyte membranes by a bis-methanophosphonate fullerene. Toxicol In Vitro 21(8):1493-1498.

    Google Scholar 

  • Yu C, Canteenwala T, Chen HH, Chen BJ, Canteenwala M, Chiang LY (1999) Hexa(sulfobutyl) fullerene-induced photodynamic effect on tumors in vivo and toxicity study in rats. Proc Electrochem Soc 99:234-249.

    Google Scholar 

  • Yu C, Canteenwala T, Chiang LY, Wilson BC, Pritzker K (2005a) Photodynamic effect of hydrophilic C60-derived nanostructures for catalytic antitumoral antibacterial applications. Synth Metals 153:37-40.

    Google Scholar 

  • Yu C, Canteenwala T, El-Khouly ME, Araki Y, Pritzker K, Ito O, Wilson BC, Chiang LY (2005b) Efficiency of singlet oxygen production from self-assembled nanospheres of molecular micelle-like photosensitizers FC4S. J Mater Chem 15:857-1864.

    Google Scholar 

  • Zakharian TY, Seryshev A, Sitharaman B, Gilbert BE, Knight V, Wilson LJ (2005) A fullerene-paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture. J Am Chem Soc 127:12508-12509.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Hamblin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Mroz, P., Tegos, G.P., Gali, H., Wharton, T., Sarna, T., Hamblin, M.R. (2008). Fullerenes as Photosensitizers in Photodynamic Therapy. In: Cataldo, F., Da Ros, T. (eds) Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes. Carbon Materials: Chemistry and Physics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6845-4_4

Download citation

Publish with us

Policies and ethics