Antioxidant Properties of Water-Soluble Fullerene Derivatives

Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 1)


Due to their inherent electronic properties, fullerenes are considered as radical sponges being capable of effectively quenching reactive oxygen species (ROS). The most promising candidates for potential pharmaceutical applications are therefore water-soluble fullerene derivatives, since they provide reasonable biological availability. In light of these considerations, we give an overview over the most recent concepts for designing and synthesizing real water-soluble fullerene compounds. Several studies concerning the quenching activities against ROS-like Superoxide radical anion of some of these novel compounds are reviewed. We finally present first promising investigations about cytoprotective and neuroprotective activities of several carboxyfullerenes in zebrafish embroys as a mammalian model system. By comparing the activities for different addition patterns and other structural changes some first conclusions concerning a structure-function relationship can be drawn.


Fullerene water-solubility antioxidant cytoprotection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali SS, Hardt JI, Quick KL, Sook Kim-Han J, Erlanger BF, Huang T-T, Epstein CJ, Dugan LL (2004) A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic. Biol. Med. 37: 1191-1202.CrossRefGoogle Scholar
  2. Andersson T, Nilsson K, Sundahl M, Westman G, Wennerstroem O (1992) C60 embedded in gamma-cyclodextrin: a water-soluble fullerene. Chem. Commun. 604-606.Google Scholar
  3. Angelini G, Cusan C, De Maria P, Fontana A, Maggini M, Pierini M, Prato M, Schergna S, Villani C (2005) The associative properties of some amphiphilic fullerene derivatives. Eur. J. Org. Chem. 1884-1891.Google Scholar
  4. Bensasson RV, Brettreich M, Frederiksen J, Gottinger H, Hirsch A, Land EJ, Leach S, McGarvey DJ, Schonberger H (2000) Reactions of e-aq, CO2• -, HO, O2• - and O2(1Δg) with a dendro[60]fullerene and C60[C(COOH)2]n (n = 2-6). Free Radic. Biol. Med. 29: 26-33. Google Scholar
  5. Beuerle F, Chronakis N, Hirsch A (2005) Regioselective synthesis and zone selective deprotection of [60]fullerene tris-adducts with an e,e,e addition pattern. Chem. Commun. 3676-3678.Google Scholar
  6. Beuerle F, Witte P, Hartnagel U, Lebovitz R, Parng C, Hirsch A (2007) Cytoprotective activities of water-soluble fullerenes in zebrafish models. J. Exp. Nanosci. 2: 147-170.CrossRefGoogle Scholar
  7. Bingel C (1993) Cyclopropanation of fullerenes. Chem. Ber. 126: 1957-1959.CrossRefGoogle Scholar
  8. Bisaglia M, Natalini B, Pellicciari R, Straface E, Malorni W, Monti D, Franceschi C, Schettini G (2000) C3-fullero-tris-methanodicarboxylic acid protects cerebellar granule cells from apoptosis. J. Neurochem. 74: 1197-1204. CrossRefGoogle Scholar
  9. Bosi S, Da Ros T, Castellano S, Banfi E, Prato M (2000) Antimycobacterial activity of ionic fullerene derivatives. Bioorg. Med. Chem. Lett. 10: 1043-1045. CrossRefGoogle Scholar
  10. Bosi S, Feruglio L, Milic D, Prato M (2003) Synthesis and water solubility of novel fullerene bisadduct derivatives. Eur. J. Org. Chem. 4741-4747.Google Scholar
  11. Braun M, Atalick S, Guldi Dirk M, Lanig H, Brettreich M, Burghardt S, Hatzimarinaki M, Ravanelli E, Prato M, Van Eldik R, Hirsch A (2003) Electrostatic Complexation and Photoinduced Electron Transfer between Zn-Cytochromec and Polyanionic Fullerene Dendrimers. Chem. Eur. J. 9: 3867-3875. CrossRefGoogle Scholar
  12. Brettreich M, Hirsch A (1998) A highly water-soluble dendro[60]fullerene. Tetrahedron Lett. 39: 2731-2734. CrossRefGoogle Scholar
  13. Brettreich M (2003) 2000 Ph.D. thesis, Friedrich Alexander University Erlangen Nuremberg.Google Scholar
  14. Cassell AM, Asplund CL, Tour JM (1999) Self-assembling supramolecular nanostructures from a C60 derivative: Nanorods and vesicles. Angew. Chem. Int. Ed. 38: 2403-2405.CrossRefGoogle Scholar
  15. Chen Y-W, Hwang KC, Yen C-C, Lai Y-L (2004) Fullerene derivatives protect against oxidative stress in RAW 264.7 cells and ischemia-reperfused lungs. Am. J. Physiol. 287: R21-R26.Google Scholar
  16. Chi Y, Bhonsle JB, Canteenwala T, Huang J-P, Shiea J, Chen B-J, Chiang LY (1998) Novel water-soluble hexakis(4-sulfobutyl)fullerenes as potent free radical scavengers. Chem. Lett. 465-466.Google Scholar
  17. Chi Y, Canteenwala T, Chen HHC, Jeng US, Lin T-L, Chiang LY (2002) Free radical scavenging and photodynamic functions of micelle-like hydrophilic hexa(sulfobutyl)fullerene (FC4S). Perspect. Fullerene Nanotechnol. 165-183.Google Scholar
  18. Chiang LY, Lu F-J, Lin J-T (1995) Free radical scavenging activity of water-soluble fullerenols. Chem. Commun. 1: 1283-1284. Google Scholar
  19. Chiang LY, Bhonsle JB, Wang L, Shu SF, Chang TM, Hwu JR (1996) Efficient one-flask synthesis of water-soluble [60]fullerenols. Tetrahedron 52: 4963-4972. CrossRefGoogle Scholar
  20. Cusan C, Da Ros T, Spalluto G, Foley S, Janot J-M, Seta P, Larroque C, Tomasini MC, Antonelli T, Ferraro L, Prato M (2002) A new multi-charged C60 derivative: synthesis and biological prop-erties. Eur. J. Org. Chem. 2928-2934.Google Scholar
  21. Da Ros T, Prato M, Novello F, Maggini M, Banfi E (1996) Easy Access to Water Soluble Fullerene Derivatives via 1,3-Dipolar Cycloadditions of Azomethine Ylides to C60. J. Org. Chem. 61: 9070-9072. CrossRefGoogle Scholar
  22. Da Ros T, Prato M (1999) Medicinal chemistry with fullerenes and fullerene derivatives. Chem. Commun. 663-669.Google Scholar
  23. Daroczi B, Kari G, McAleer MF, Wolf JC, Rodeck U, Dicker AP (2006) In vivo radioprotection by the fullerene nanoparticle DF-1 as assessed in a zebrafish model. Clin. Cancer Res. 12: 7086-7091. CrossRefGoogle Scholar
  24. de La Vaissiere B, Sandall JPB, Fowler PW, de Oliveira P, Bensasson RV (2001) Regioselectivity in radical reactions of C60 derivatives. J. Chem. Soc. Perkin Trans. 2: 821-823.Google Scholar
  25. Dugan LL, Sensi SL, Canzoniero LMT, Handran SD, Rothman SM, Lin TS, Goldberg MP, Choi DW (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J. Neurosci. 15: 6377-6388. Google Scholar
  26. Dugan LL, Turetsky DM, Du C, Lobner D, Wheeler M, Almli CR, Shen CK, Luh TY, Choi DW, Lin TS (1997) Carboxyfullerenes as neuroprotective agents. Proc. Natl. Acad. Sci. USA 94: 9434-9439. CrossRefGoogle Scholar
  27. Dugan LL, Lovett EG, Quick KL, Lotharius J, Lin TT, O’Malley KL (2001) Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat. Disord. 7: 243-246.CrossRefGoogle Scholar
  28. Echegoyen L, Echegoyen LE (1998) Electrochemistry of Fullerenes and Their Derivatives. Acc. Chem. Res. 31: 593-601. CrossRefGoogle Scholar
  29. Faulkner KM, Liochev SI, Fridovich I (1994) Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo. J. Biol. Chem. 269: 23471-23476.Google Scholar
  30. Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C (2002) Cellular locali-sation of a water-soluble fullerene derivative. Biochem. Biophys. Res. Commun. 294: 116-119. CrossRefGoogle Scholar
  31. Fumelli C, Marconi A, Salvioli S, Straface E, Malorni W, Offidani AM, Pellicciari R, Schettini G, Giannetti A, Monti D, Franceschi C, Pincelli C (2000) Carboxyfullerenes protect human keratinocytes from ultraviolet-B-induced apoptosis. J. Invest. Dermatol. 115: 835-841.CrossRefGoogle Scholar
  32. Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [60]Fullerene is a Powerful Antioxidant in Vivo with No Acute or Subacute Toxicity. Nano Lett . 5: 2578-2585. CrossRefGoogle Scholar
  33. Giacalone F, Martin N (2006) Fullerene Polymers: Synthesis and Properties. Chem. Rev. 106: 5136-5190. CrossRefGoogle Scholar
  34. Guldi DM, Prato M (2000) Excited-State Properties of C60 Fullerene Derivatives. Acc. Chem. Res. 33: 695-703. CrossRefGoogle Scholar
  35. Gun’kin IF, Tseluikin VN, Loginova NY (2006) Synthesis and properties of water-soluble deriva-tives of fullerene C60. Russ. J. Appl. Chem. 79: 1001-1004. CrossRefGoogle Scholar
  36. Herrmann A, Ruettimann M, Thilgen C, Diederich F (1995) Multiple cyclopropanations of C70. Synthesis and characterization of bis-, tris-, and tetrakis-adducts and chiroptical properties of bis-adducts with chiral addends, including a recommendation for the configurational description of fullerene derivatives with a chiral addition pattern. Helv. Chim. Acta 78: 1673-1704. Google Scholar
  37. Hirsch A, Lamparth I, Karfunkel HR (1994) Fullerene chemistry in three dimensions: isolation of seven regioisomeric bisadducts and chiral trisadducts from C60 and bis(ethoxycarbonyl)methyl ene. Angew. Chem. Int. Ed. Engl. 33: 437-438. CrossRefGoogle Scholar
  38. Hirsch A, Brettreich M (2005) Fullerenes - Chemistry and Reactions. Wiley-VCH Verlag, Weinheim.Google Scholar
  39. Hu Z, Guan WC, Tang XY, Huang LZ, Xu H (2007) Synthesis of water-soluble cystine C60 deriva-tive with catalyst and its active oxygen radical scavenging ability. Chin. Chem. Lett. 18: 51-54. CrossRefGoogle Scholar
  40. Huang SS, Tsai SK, Chih CL, Chiang LY, Hsieh HM, Teng CM, Tsai MC (2001) Neuroprotective effect of hexasulfobutylated C60 on rats subjected to focal cerebral ischemia. Free Radic. Biol. Med. 30: 643-649. CrossRefGoogle Scholar
  41. Huang YL, Shen CK, Luh TY, Yang HC, Hwang KC, Chou CK (1998) Blockage of apoptotic signaling of transforming growth factor-beta in human hepatoma cells by carboxyfullerene. Eur. J. Biochem. 254: 38-43. CrossRefGoogle Scholar
  42. Illescas BM, Martinez-Alvarez R, Fernandez-Gadea J, Martin N (2003) Synthesis of water soluble fulleropyrrolidines bearing biologically active arylpiperazines. Tetrahedron 59: 6569-6577.CrossRefGoogle Scholar
  43. Jeng US, Lin TL, Chang TS, Lee HY, Hsu CH, Hsieh YW, Canteenwala T, Chiang LY (2001) Comparison of the aggregation behavior of water-soluble hexa(sulfobutyl)fullerenes and polyhydroxylated fullerenes for their free-radical scavenging activity. Prog. Colloid Polym. Sci. 118: 232-237. CrossRefGoogle Scholar
  44. Kato H, Boettcher C, Hirsch A (2007) Sugar balls: synthesis and supramolecular assembly of [60]fullerene. Eur. J. Org. Chem. 2659-2666.Google Scholar
  45. Kiritoshi S, Nishikawa T, Sonoda K, Kukidome D, Senokuchi T, Matsuo T, Matsumura T, Tokunaga H, Brownlee M, Araki E (2003) Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells: potential role in diabetic nephropathy. Diabetes 52: 2570-2577. CrossRefGoogle Scholar
  46. Kordatos K, Bosi S, Da Ros T, Zambon A, Lucchini V, Prato M (2001) Isolation and charac-terization of all eight bisadducts of fulleropyrrolidine derivatives. J. Org. Chem. 66: 2802-2808. CrossRefGoogle Scholar
  47. Kraetschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347: 354-358. CrossRefGoogle Scholar
  48. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318: 162-163. CrossRefGoogle Scholar
  49. Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF (1991) Radical reactions of C60. Science 254: 1183-1185. CrossRefGoogle Scholar
  50. Kunsagi-Mate S, Szabo K, Bitter I, Nagy G, Kollar L(2004) Complex formation between water-soluble sulfonated calixarenes and C60 fullerene. Tetrahedron Lett.45: 1387-1390.Google Scholar
  51. Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364: 535-537. CrossRefGoogle Scholar
  52. Lai HS, Chen WJ, Chiang LY (2000a) Free radical scavenging activity of fullerenol on the ischemia-reperfusion intestine in dogs. World J. Surg. 24: 450-454. CrossRefGoogle Scholar
  53. Lai HS, Chen Y, Chen WJ, Chang KJ, Chiang LY (2000b) Free radical scavenging activity of fullerenol on grafts after small bowel transplantation in dogs. Transplantation Proc. 32: 1272-1274. CrossRefGoogle Scholar
  54. Lamparth I, Hirsch A (1994) Water-soluble malonic acid derivatives of C60 with a defined three-dimensional structure. Chem. Commun. 1727-1728.Google Scholar
  55. Lee YT, Chiang LY, Chen WJ, Hsu HC (2000) Water-soluble Hexasulfobutyl[60]fullerene inhibit low-density lipoprotein oxidation in aqueous and lipophilic phases. C. Proc. Soc. Exp. Biol. Med. 224: 69-75. CrossRefGoogle Scholar
  56. Lin AM, Chyi BY, Wang SD, Yu HH, Kanakamma PP, Luh TY, Chou CK, Ho LT (1999) Carboxyfullerene prevents iron-induced oxidative stress in rat brain. J. Neurochem. 72: 1634-1640. CrossRefGoogle Scholar
  57. Lin AM, Fang SF, Lin SZ, Chou CK, Luh TY, Ho LT (2002) Local carboxyfullerene protects cortical infarction in rat brain. Neurosci. Res. 43: 317-321. CrossRefGoogle Scholar
  58. Lin HS, Lin TS, Lai RS, D’Rosario T, Luh TY (2001) Fullerenes as a new class of radioprotectors. Int. J. Radiat. Biol. 77: 235-239. CrossRefGoogle Scholar
  59. Lotharius J, Dugan LL, O’Malley KL (1999) Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J. Neurosci. 19: 1284-1293.Google Scholar
  60. Maggini M, Scorrano G, Prato M (1993) Addition of azomethine ylides to C60: synthesis, charac-terization, and functionalization of fullerene pyrrolidines. J. Am. Chem. Soc. 115: 9798-9799. CrossRefGoogle Scholar
  61. Marchesan S, Da Ros T, Prato M (2005) Isolation and characterization of nine tris-adducts of N-methylfulleropyrrolidine derivatives. J. Org. Chem. 70: 4706-4713. CrossRefGoogle Scholar
  62. Mashino T, Okuda K, Hirota T, Hirobe M, Nagano T, Mochizuki M (1999) Inhibition of E. coli growth by fullerene derivatives and inhibition mechanism. Bioorg. Med. Chem. Lett. 9: 2959-2962. Google Scholar
  63. McCord JM, Fridovich I (1969) Superoxide dismutase. Enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244: 6049-6055. Google Scholar
  64. McEwen CN, McKay RG, Larsen BS (1992) C60 as a radical sponge. J. Am. Chem. Soc. 114: 4412-4414. CrossRefGoogle Scholar
  65. Mirkov SM, Djordjevic AN, Andric NL, Andric SA, Kostic TS, Bogdanovic GM, Vojinovic-Miloradov MB, Kovacevic RZ (2004) Nitric oxide-scavenging activity of polyhydroxylated fullerenol, C60(OH)24. Nitric Oxide 11: 201-207. CrossRefGoogle Scholar
  66. Monti D, Moretti L, Salvioli S, Straface E, Malorni W, Pellicciari R, Schettini G, Bisaglia M, Pincelli C, Fumelli C, Bonafe M, Franceschi C (2000) C60 carboxyfullerene exerts a protective activity against oxidative stress-induced apoptosis in human peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun. 277: 711-717. CrossRefGoogle Scholar
  67. Murthy CN, Geckeler KE (2001) The water-soluble beta-cyclodextrin-[60]fullerene complex. Chem. Commun. 1194-1195.Google Scholar
  68. Nakamura E, Isobe H (2003) Functionalized Fullerenes in Water. The First 10 Years of Their Chemistry, Biology, and Nanoscience. Acc. Chem. Res. 36: 807-815. Google Scholar
  69. Okuda K, Mashino T, Hirobe M (1996) Superoxide radical quenching and cytochrome C peroxidase-like activity of C60-dimalonic acid, C62(COOH)4. Bioorg. Med. Chem. Lett. 6: 539-542. CrossRefGoogle Scholar
  70. Okuda K, Hirota T, Hirobe M, Nagano T, Mochizuki M, Mashino T (2000) Synthesis of various water-soluble C60 derivatives and their superoxide-quenching activity. Fullerene Sci. Technol. 8: 89-104. Google Scholar
  71. Pellarini F, Pantarotto D, Da Ros T, Giangaspero A, Tossi A, Prato M (2001) A novel [60]fullerene amino acid for use in solid-phase peptide synthesis. Org. Lett. 3: 1845-1848.CrossRefGoogle Scholar
  72. Periya VK, Koike I, Kitamura Y, Iwamatsu S-I, Murata S (2004) Hydrophilic [60]fullerene car-boxylic acid derivatives retaining the original 60 π electronic system. Tetrahedron Lett. 45: 8311-8313. CrossRefGoogle Scholar
  73. Reuther U, Brandmüller T, Donaubauer W, Hampel F, Hirsch A (2002) A highly regioselective approach to multiple adducts of C60 governed by strain minimization of macrocyclic malonate addends. Chem. Eur. J. 8: 2261-2273. CrossRefGoogle Scholar
  74. Reynolds IJ, Hastings TG (1995) Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J. Neurosci. 15: 3318-3327. Google Scholar
  75. Rieger JM, Shah AR, Gidday JM (2002) Ischemia-reperfusion injury of retinal endothelium by cyclooxygenase- and xanthine oxidase-derived superoxide. Exp. Eye Res. 74: 493-501.CrossRefGoogle Scholar
  76. Riley DP (1999) Functional mimics of superoxide dismutase enzymes as therapeutic agents. Chem. Rev. 99: 2573-2587. CrossRefGoogle Scholar
  77. Rio Y, Nierengarten J-F (2002) Water soluble supramolecular cyclotriveratrylene-[60]fullerene complexes with potential for biological applications. Tetrahedron Lett. 43: 4321-4324.CrossRefGoogle Scholar
  78. Scrivens WA, Tour JM, Creek KE, Pirisi L (1994) Synthesis of 14C-Labeled C60, Its Suspension in Water, and Its Uptake by Human Keratinocytes. J. Am. Chem. Soc. 116: 4517-4518. CrossRefGoogle Scholar
  79. Silva RM, Ries V, Oo TF, Yarygina O, Jackson-Lewis V, Ryu EJ, Lu PD, Marciniak SJ, Ron D, Przedborski S, Kholodilov N, Greene LA, Burke RE (2005) CHOP/GADD153 is a mediator of apoptotic death in substantia nigra dopamine neurons in an in vivo neurotoxin model of parkinsonism. J. Neurochem. 95: 974-986. CrossRefGoogle Scholar
  80. Straface E, Natalini B, Monti D, Franceschi C, Schettini G, Bisaglia M, Fumelli C, Pincelli C, Pellicciari R, Malorni W (1999) C3-fullero-tris-methanodicarboxylic acid protects epithelial cells from radiation-induced anoikia by influencing cell adhesion ability. FEBS Lett. 454: 335-340. CrossRefGoogle Scholar
  81. Sun T, Jia ZS, Chen WX, Jin YX, Zhu DX (2001) Active oxygen radical scavenging ability of water-soluble beta-alanine C60 adducts. Chin. Chem. Lett. 12: 997-1000. Google Scholar
  82. Sun T, Xu Z (2006) Radical scavenging activities of alpha-alanine C60 adduct. Bioorg. Med. Chem. Lett. 16: 3731-3734. CrossRefGoogle Scholar
  83. Troshina OA, Troshin PA, Peregudov AS, Kozlovskiy VI, Balzarini J, Lyubovskaya RN (2007) Chlorofullerene C60Cl6: a precursor for straightforward preparation of highly water-soluble polycarboxylic fullerene derivatives active against HIV. Org. Biomol. Chem. 5: 2783-2791. CrossRefGoogle Scholar
  84. Tsao N, Luh TY, Chou CK, Wu JJ, Lin YS, Lei HY (2001) Inhibition of group A streptococcus infection by carboxyfullerene. Antimicrob. Agents Chemother. 45: 1788-1793.CrossRefGoogle Scholar
  85. Tsao N, Luh TY, Chou CK, Chang TY, Wu JJ, Liu CC, Lei HY (2002) In vitro action of carboxyfullerene. J. Antimicrob. Chemother. 49: 641-649. CrossRefGoogle Scholar
  86. Tzeng SF, Lee JL, Kuo JS, Yang CS, Murugan P, Ai Tai L, Chu Hwang K (2002) Effects of malonate C60 derivatives on activated microglia. Brain Res. 940: 61-68.CrossRefGoogle Scholar
  87. Wang IC, Tai LA, Lee DD, Kanakamma PP, Shen CK, Luh TY, Cheng CH, Hwang KC (1999) C60 and water-soluble fullerene derivatives as antioxidants against radical-initiated lipid peroxida-tion. J. Med. Chem. 42: 4614-4620. CrossRefGoogle Scholar
  88. Witte P, Beuerle F, Hartnagel U, Lebovitz R, Savouchkina A, Sali S, Guldi D, Chronakis N, Hirsch A (2007) Water solubility, antioxidant activity and cytochrome C binding of four families of exohedral adducts of C(60) and C(70). Org. Biomol. Chem. 5: 3599-3613.CrossRefGoogle Scholar
  89. Wolff DJ, Mialkowski K, Richardson CF, Wilson SR (2001) C60-fullerene monomalonate adducts selectively inactivate neuronal nitric oxide synthase by uncoupling the formation of reactive oxygen intermediates from nitric oxide production. Biochemistry 40: 37-45.CrossRefGoogle Scholar
  90. Xiao L, Takada H, Maeda K, Haramoto M, Miwa N (2005) Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomed. Pharmacother. 59: 351-358. CrossRefGoogle Scholar
  91. Yang DY, Wang MF, Chen IL, Chan YC, Lee MS, Cheng FC (2001) Systemic administration of a water-soluble hexasulfonated C60 reduces cerebral ischemia-induced infarct volume in gerbils. Neurosci. Lett. 311: 121-124. CrossRefGoogle Scholar
  92. Yang J, Alemany LB, Driver J, Hartgerink JD, Barron AR (2007) Fullerene-derivatized amino acids: synthesis, characterization, antioxidant properties, and solid-phase peptide synthesis. Chem.Eur. J. 13: 2530-2545. CrossRefGoogle Scholar
  93. Zhong Y-W, Matsuo Y, Nakamura E (2006) Convergent synthesis of a polyfunctionalized fuller-ene by regioselective five-fold addition of a functionalized organocopper reagent to C60. Org. Lett. 8: 1463-1466.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  1. 1.Department for Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Lehrstuhl für Organische Chemie IIUniversität Erlangen-NürnbergErlangenGermany
  2. 2.Tego BiosciencesPasadenaUSA

Personalised recommendations