Applications of Carbon-Based Nanomaterials for Drug Delivery in Oncology

  • Nicole H. Levi-Polyachenko
  • David L. Carroll
  • John H. StewartIV
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 1)

Abstract

The goal of this chapter is to introduce carbon nanomaterials and highlight research focused on their use as cancer therapeutics. The physical properties of fullerenes and carbon nanotubes, including their spectral characteristics are described. Current oncology treatment regimes are described to provide an overview of where carbon nanomaterials may have significant value in further development of the established standards of care procedures. Photodynamic therapy and drug delivery using fullerene C60 is explored. Thermal ablation techniques using carbon nanotubes are explained and alternate hyperthermic methods using carbon nanotubes are described. Specifically, carbon nanotubes are examined for their potential contribution to the currently practiced clinical therapy intraperitoneal hyperthermic chemoperfusion. Nanotubes and nanohorns filled with chemotherapeutic agents are examined as are different methods for filling and containment of drug moieties. The attachment of active molecules to fullerenes is described with examples for use in oncology. Toxicity issues are explored and the future directions and potential for carbon nanomaterial types concludes the chapter.

Keywords

Carbon Nanotubes Fullerenes Hyperthermic Chemoperfusion Cancer 

Abbreviations

PDT

Photodynamic therapy

EPR

Enhanced permeability and retention

THF

Tetrahydrofuran

UV

Ultraviolet

DNA

Deoxyribonucleic acid

PL

Photoluminescence

SWNT

Single-walled nanotube

DWNT

Double-walled nanotube

MWNT

Multi-walled nanotube

IV

Intravenous

HSP

Heat shock protein

IPHC

Intraperitoneal hyperthermic chemoperfusion/chemotherapy

MMC

Mitomycin C

IP

Intraperitoneal

SOD

Superoxide dismutase

Nd:YAG

Neodymium-doped yttrium aluminium garnet

Nd

Y3Al5O12

NIR

Near infrared

FITC

Fluorescein isothiocyanate

PEG

Polyethylene glycol

FA

Folic acid

CDDP

Cisplatin

TEM

Transmission electron microscopy

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe S, Tokizaki T, Miki Y, Tateishi A, Ogawa K, Nakano H, Matsushita T (2005) Hyperthermic isolated regional perfusion with CDDP for bone and soft-tissue sarcoma of the lower limb: pharmacokinetics, thermal dose, toxicity, and feasibility. Cancer Chemotherapy and Pharmacology 56: 55-62. CrossRefGoogle Scholar
  2. Ajima K, Maigne A, Yudasaka M, Iijima S (2006) Optimum hole-opening condition for cisplatin incorporation in single-wall carbon nanohorns and its release. Journal of Physical Chemistry B 110: 19097-19099. CrossRefGoogle Scholar
  3. Ajima K, Yudasaka M, Murakami T, Maigne A, Shiba K, Iijima S (2005) Carbon nanohorns as anticancer drug carriers. Molecular Pharmacology 2: 475-480. CrossRefGoogle Scholar
  4. Alvarez SJ, Leon R, Hernandez B, Sampedro EA, Zhang LM, Castell AE (2003) Fullerene C60 protects against Langerhans cells depletion induced by DMBA. Journal of Investigative Dermatology 121: 1244. Google Scholar
  5. Avdeev MV, Khokhryakov AA, Tropin TV, Andrievsky GV, Klochkov VK, Derevyanchenko LI, Rosta L, Garamus VM, Priezzhev VB, Korobov MV, Aksenov VL (2004) Structural features of molecular-colloidal solutions of C-60 fullerenes in water by small-angle neutron scattering. Langmuir 20: 4363-4368. CrossRefGoogle Scholar
  6. Babilas P, Karrer S, Sidoroff A, Landthaler M, Szeimies RM (2005) Photodynamic therapy in der-matology - an update. Photodermatology Photoimmunology and Photomedicine 21: 142-149.CrossRefGoogle Scholar
  7. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298: 2361-2366.Google Scholar
  8. Bandow S, Asaka S, Saito Y, Rao AM, Grigorian L, Richter E, Eklund PC (1998) Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Physical Review Letters 80: 3779-3782. CrossRefGoogle Scholar
  9. Bashkin IO, Izotov AN, Moravsky AP, Negrii VD, Nikolaev RK, Ossipyan YA, Ponyatovsky EG, Steinman EA (1997) Photoluminescence of solid C-60 polymerized under high pressure. Chemical Physics Letters 272: 32-37.CrossRefGoogle Scholar
  10. Bastide C, Garcia S, Anfossi E, Ragni E, Rossi D (2006) Histologic evaluation of radiofrequency ablation in renal cancer. European Journal of Surgical Oncology 32: 980-983.CrossRefGoogle Scholar
  11. Belin T, Epron R (2005) Characterization methods of carbon nanotubes: a review. Materials Science and Engineering B-Solid State Materials for Advanced Technology 119: 105-118.Google Scholar
  12. Berger C, Poncharal P, Yi Y, de Heer W (2003) Ballistic conduction in multiwalled carbon nano-tubes. Journal of Nanoscience and Nanotechnology 3: 171-177. CrossRefGoogle Scholar
  13. Bibby DC, Talmadge JE, Dalal MK, Kurz SG, Chytil KM, Barry SE, Shand DG, Steiert M (2005) Pharmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice. International Journal of Pharmaceutics 293: 281-290.CrossRefGoogle Scholar
  14. Bisaglia M, Natalini B, Pellicciari R, Straface E, Malorni W, Monti D, Franceschi C, Schettini G (2000) C-3-fullero-tris-methanodicarboxylic acid protects cerebellar granule cells from apop-tosis. Journal of Neurochemistry 74: 1197-1204. CrossRefGoogle Scholar
  15. Blank VD, Nuzdin AA, Bagramov RK, Prokhorov VM (2001) A comparison of some thermody-namic parameters between superhard fullerite, some metals and some covalent elements. Carbon 39: 905-908. CrossRefGoogle Scholar
  16. Bogdanovic G, Kojic V, Dordevic A, Canadanovic-Brunet J, Vojinovic-Miloradov M, Baltic VV (2004) Modulating activity of fullerol C60(OH)22 on doxorubicin-induced cytotoxicity. Toxicology In Vitro 18: 629-637. CrossRefGoogle Scholar
  17. Bolskar RD, Benedetto AF, Husebo LO, Price RE, Jackson EF, Wallace S, Wilson LJ, Alford JM (2003) First soluble M@C-60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C-60[C(COOH)(2)](10) as a MRI contrast agent. Journal of the American Chemical Society 125: 5471-5478. CrossRefGoogle Scholar
  18. Bosi S, Da Ros T, Castellano S, Banfi E, Prato M (2000) Antimycobacterial activity of ionic fullerene derivatives. Bioorganic and Medicinal Chemistry Letters 10: 1043-1045.CrossRefGoogle Scholar
  19. Bosi S, Da Ros T, Spalluto G, Prato M (2003) Fullerene derivatives: an attractive tool for biologi-cal applications. European Journal of Medicinal Chemistry 38: 913-923.CrossRefGoogle Scholar
  20. Bourgeois H, Vermorken J, Dark G, Jones A, Fumoleau P, Stupp R, Tourani J, Brain E, Nguyen L, Lefresne F, Puozzo C (2007) Evaluation of oral versus intravenous dose of vinorelbine to achieve equivalent blood exposures in patients with solid tumours. Cancer Chemotherapy and Pharmacology 60: 407-413. CrossRefGoogle Scholar
  21. Braun C, Smirnov S (1993) Why is water blue. J. Chemical Education 70: 612. CrossRefGoogle Scholar
  22. Brettreich M, Hirsch A (1998) A highly water-soluble dendro[60]fullerene. Tetrahedron Letters 39: 2731-2734. CrossRefGoogle Scholar
  23. Brewis M, Clarkson GJ, Humberstone P, Makhseed S, McKeown NB (1998) The synthesis of some phthalocyanines and napthalocyanines derived from sterically hindered phenols. Chemistry-A European Journal 4: 1633-1640. CrossRefGoogle Scholar
  24. Brigger I, Morizet J, Laudani L, Aubert G, Appel M, Velasco V, Terrier-Lacombe MJ, Desmaele D, d’Angelo J, Couvreur P, Vassal G (2004) Negative preclinical results with stealth( (R) ) nano-spheres-encapsulated Doxorubicin in an orthotopic murine brain tumor model. Journal of Controlled Release 100: 29-40. CrossRefGoogle Scholar
  25. Brown E, Hao L, Gallop JC, Macfarlane JC (2005) Ballistic thermal and electrical conductance measurements on individual multiwall carbon nanotubes. Applied Physics Letters 87: 2-3.CrossRefGoogle Scholar
  26. Brunner TJ, Grass RN, Bohner M, Stark WJ (2007) Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction. Journal of Materials Chemistry 17: 4072-4078. CrossRefGoogle Scholar
  27. Brusentsov NA, Brusentsova TN, Filinova EY, Jurchenko NY, Kupriyanov DA, Pirogov YA, Dubina AI, Shumskikh MN, Shumakov LI, Anashkina EN, Shevelev AA, Uchevatkin AA (2007) Magnetohydrodynamic thermochemotherapy and MRI of mouse tumors. Journal of Magnetism and Magnetic Materials 311: 176-180. CrossRefGoogle Scholar
  28. Burke PJ, Li SD, Yu Z (2006) Quantitative theory of nanowire and nanotube antenna performance. IEEE Transactions on Nanotechnology 5: 314-334. CrossRefGoogle Scholar
  29. Capozzi V, Trovato T, Berger H, Lorusso GF (1997) Photoluminescence spectra of C-60 thin films deposited on different substrates. Carbon 35: 763-766.CrossRefGoogle Scholar
  30. Carrero-Sanchez JC, Elias AL, Mancilla R, Arrellin G, Terrones H, Laclette JP, Terrones M (2006) Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Letters 6: 1609-1616. CrossRefGoogle Scholar
  31. Casey A, Farrell GF, McNamara M, Byrne1 HJ, Chambers G (2005) Interaction of Carbon Nanotubes with Sugar Complexes. Synthetic Metals 153: 357-360. CrossRefGoogle Scholar
  32. Castano AP, Demidova TN, Hamblin MR (2005) Mechanisms in photodynamic therapy: Part three - Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis and Photodynamic Therapy 2: 91-106.CrossRefGoogle Scholar
  33. Charlier JC, Iijima S (2001) Growth mechanisms of carbon nanotubes. Carbon Nanotubes 80: 55-80. CrossRefGoogle Scholar
  34. Chen B, Pogue BW, Hoopes PJ, Hasan T (2006) Vascular and cellular targeting for photodynamic therapy. Critical Reviews in Eukaryotic Gene Expression 16: 279-305. Google Scholar
  35. Chen HHC, Yu C, Ueng TH, Chen SD, Chen BJ, Huang KJ, Chiang LY (1998) Acute and suba-cute toxicity study of water-soluble polyalkylsulfonated C-60 in rats. Toxicologic Pathology 26: 143-151. CrossRefGoogle Scholar
  36. Chen YW, Hwang KC, Yen CC, Lai YL (2004) Fullerene derivatives protect against oxidative stress in RAW 264.7 cells and ischemia-reperfused lungs. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 287: R21-R26. Google Scholar
  37. Corti L, Skarlatos J, Boso C, Cardin F, Kosma L, Koukourakis MI, Giatromanolaki A, Norberto L, Shaffer M, Beroukas K (2000) Outcome of patients receiving photodynamic therapy for early esophageal cancer. International Journal of Radiation Oncology*Biology*Physics 47: 419-424. Google Scholar
  38. Da Ros T, Spalluto G, Prato M (2001) Biological applications of fullerene derivatives: a brief overview. Croatica Chemica Acta 74: 743-755. Google Scholar
  39. Dalmas F, Dendievel R, Chazeau L, Cavaille JY, Gauthier C (2006) Carbon nanotube-filled poly-mer of electrical conductivity in composites. Numerical simulation three-dimensional entan-gled fibrous networks. Acta Materialia 54: 2923-2931. Google Scholar
  40. Dang A, Mansfield P, Ilsin B, Hightower C, Aravindan N, Rice D, Riedel B (2007) Intraoperative Hyperthermic Intrathoracic Chemotherapy for Pleural Extension of Pseudomyxoma Peritonei. Journal of Cardiothoracic and Vascular Anesthesia 21: 265-268. CrossRefGoogle Scholar
  41. Danilov OB, Belousova IM, Mak AA, Belousov VP, Grenishin AS, Kiselev VM, Kris’ko AV, Ponomarev AN, Sosnov EN (2003) Generation of singlet oxygen with the use of optically excited fullerenes and fullerene-like nanoparticles. Optics and Spectroscopy 95: 833-842.CrossRefGoogle Scholar
  42. Deguchi S, Alargova RG, Tsujii K (2001) Stable dispersions of fullerenes, C-60 and C-70, in water. Preparation and characterization. Langmuir 17: 6013-6017. Google Scholar
  43. Dewhirst MW (1994) Future-Directions in Hyperthermia Biology. International Journal of Hyperthermia 10: 339-345. CrossRefGoogle Scholar
  44. Di Paolo A (2004) Liposomal anticancer therapy: pharmacokinetic and clinical aspects. J. Chemotherap. 16: 90-93. Google Scholar
  45. Dougherty TJ, Marcus SL (1992) Photodynamic Therapy. European Journal of Cancer 28A: 1734-1742.Google Scholar
  46. Dresselhaus M, Dresselhaus G, Eklund PC (1996) Science of Fullerenes and Carbon Nanotubes. Academic Press,Google Scholar
  47. Dresselhaus MS, Dresselhaus G, Charlier JC, Hernandez E (2004) Electronic, thermal and mechanical properties of carbon nanotubes. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 362: 2065-2098.CrossRefGoogle Scholar
  48. Dresselhaus MS, Eklund PC (2000) Phonons in carbon nanotubes. Advances in Physics 49: 705-814. CrossRefGoogle Scholar
  49. Driscoll KE, Carter JM, Howard BW, Hassenbein DG, Pepelko W, Baggs RB, Oberdorster G (1996) Pulmonary inflammatory, chemokine, and mutagenic responses in rats after subchronic inhalation of carbon black. Toxicology and Applied Pharmacology 136: 372-380.CrossRefGoogle Scholar
  50. Dugan LL, Lovett EG, Quick KL, Lotharius J, Lin TT, O’Malley KL (2001) Fullerene-based anti-oxidants and neurodegenerative disorders. Parkinsonism and Related Disorders 7: 243-246.CrossRefGoogle Scholar
  51. El Sherbiny IM, Lins RJ, Abdel-Bary EM, Harding DRK (2005) Preparation, characterization, swelling and in vitro drug release behaviour of poly [N-acryloylglycine-chitosan interpoly-meric pH and thermally-responsive hydrogels. European Polymer Journal 41: 2584-2591.CrossRefGoogle Scholar
  52. Ely JL, Emken MR, Accuntius JA, Wilde DS, Haubold AD, More RB, Bokros JC (1998) Pure pyrolytic carbon: preparation and properties of a new material, On-X (R) carbon for mechani-cal heart valve prostheses. Journal of Heart Valve Disease 7: 626-632. Google Scholar
  53. Ernst H, Rittinghausen S, Bartsch W, Creutzenberg O, Dasenbrock C, Gorlitz BD, Hecht M, Kairies U, Muhle H, Muller M, Heinrich U, Pott F (2002) Pulmonary inflammation in rats after intratracheal instillation of quartz, amorphousSiO(2),carbon black, and coal dust and the influence of poly-2-vinylpyridine-N-oxide (PVNO). Experimental and Toxicologic Pathology 54: 109-126. CrossRefGoogle Scholar
  54. Fernandez JM, Bilgin MD, Grossweiner LI (1997) Singlet oxygen generation by photodynamic agents. Journal of Photochemistry and Photobiology B-Biology 37: 131-140.CrossRefGoogle Scholar
  55. Foley S, Bosi S, Larroque C, Prato M, Janot JM, Seta P (2001) Photophysical properties of novel water soluble fullerene derivatives. Chemical Physics Letters 350: 198-205.CrossRefGoogle Scholar
  56. Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C (2002a) Cellular localisation of a water-soluble fullerene derivative. Biochemical and Biophysical Research Communications 294: 116-119. CrossRefGoogle Scholar
  57. Foley S, Curtis ADM, Hirsch A, Brettreich M, Pelegrin A, Seta P, Larroque C (2002b) Interaction of a water soluble fullerene derivative with reactive oxygen species and model enzymatic sys-tems. Fullerenes Nanotubes and Carbon Nanostructures 10: 49-67. CrossRefGoogle Scholar
  58. Foote CS (1995) Fullerenes as photosensitizers. Light-Activated Pest Control 616: 17-23. CrossRefGoogle Scholar
  59. Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, Alemany LB, Tao YJ, Guo W, Ausman KD, Colvin VL, Hughes JB (2005) C-60 in water: nanocrystal formation and micro-bial response. Environmental Science and Technology 39: 4307-4316. CrossRefGoogle Scholar
  60. Fotinos N, Campo MA, Popowycz F, Gurny R, Lange N (2006) 5-Aminolevulinic acid derivatives in photomedicine: characteristics, application and perspectives. Photochemistry and Photobiology 82: 994-1015. CrossRefGoogle Scholar
  61. Fuchs J, Thiele J (1998) The role of oxygen in cutaneous photodynamic therapy. Free Radical Biology and Medicine 24: 835-847. CrossRefGoogle Scholar
  62. Gabizon A, Goren D, Cohen R, Barenholz Y (1998) Development of liposomal anthracyclines: from basics to clinical applications. Journal of Controlled Release 53: 275-279.CrossRefGoogle Scholar
  63. Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [60]Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Letters 5: 2578-2585.CrossRefGoogle Scholar
  64. Goodman SL, Tweden KS, Albrecht RM (1996) Platelet interaction with pyrolytic carbon heart-valve leaflets. Journal of Biomedical Materials Research 32: 249-258. CrossRefGoogle Scholar
  65. Green PS, Leeuwenburgh C (2002) Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochimica et Biophysica Acta-Molecular Basis of Disease 1588: 94-101. CrossRefGoogle Scholar
  66. Guldi DM, Hungerbuhler H, Asmus KD (1999) Inhibition of cluster phenomena in truly water soluble fullerene derivatives: bimolecular electron and energy transfer processes. Journal of Physical Chemistry B 103: 1444-1453. CrossRefGoogle Scholar
  67. Hanajiri K, Maruyama T, Kaneko Y, Mitsui H, Watanabe S, Sata M, Nagai R, Kashima T, Shibahara J, Omata M, Matsumoto Y (2006) Microbubble-induced increase in ablation of liver tumors by high-intensity focused ultrasound. Hepatology Research 36: 308-314.CrossRefGoogle Scholar
  68. Hanson GW (2005) Fundamental transmitting properties of carbon nanotube antennas. IEEE Transactions on Antennas and Propagation 53: 3426-3435. CrossRefGoogle Scholar
  69. Harrod-Kim P (2006) Tumor ablation with photodynamic therapy: introduction to mechanism and clinical applications. Journal of Vascular and Interventional Radiology 17: 1441-1448.CrossRefGoogle Scholar
  70. Hepplestone SP, Ciavarella AM, Janke C, Srivastava GP (2006) Size and temperature dependence of the specific heat capacity of carbon nanotubes. Surface Science 600: 3633-3636.CrossRefGoogle Scholar
  71. Hepplestone SP, Srivastava GP (2006) The intrinsic lifetime of low-frequency zone-centre phonon modes in silicon nanowires and carbon nanotubes. Applied Surface Science 252: 7726-7729.CrossRefGoogle Scholar
  72. Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H (2002) The cel-lular and molecular basis of hyperthermia. Critical Reviews in Oncology/Hematology 43: 33-56.CrossRefGoogle Scholar
  73. Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ, West JL (2006) Metal nanoshells. Annals of Biomedical Engineering 34: 15-22. CrossRefGoogle Scholar
  74. Hirsh V, Desjardins P, Needles BM, Rigas JR, Jahanzeb M, Nguyen L, Zembryki D, Leopold LH (2007) Oral versus intravenous administration of vinorelbine as a single agent for the first-line treatment of metastatic nonsmall cell lung carcinoma (NSCLC) - A randomized phase II trial. American Journal of Clinical Oncology-Cancer Clinical Trials 30: 245-251.Google Scholar
  75. Huang H, Zhang WK, Li MC, Gan YP, Ma CA, Zhang XB (2004) Electrochemical production of Sn-filled carbon nanotubes in molten salts. Transactions of Nonferrous Metals Society of China 14: 441-445. Google Scholar
  76. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354: 56-58. CrossRefGoogle Scholar
  77. International Agency for Research on Cancer. 2002. www-dep.iarc.fr, Globocan 2002 Ref Type: ReportGoogle Scholar
  78. Isobe H, Nakanishi W, Tomita N, Jinno S, Okayama H, Nakamura E (2006) Gene delivery by aminofullerenes: Structural requirements for efficient transfection. Chemistry-An Asian Journal 1: 167-175. CrossRefGoogle Scholar
  79. Jain A, Kim YT, Mckeon RJ, Bellamkonda RV (2006) In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials 27: 497-504.CrossRefGoogle Scholar
  80. Janzen N, Perry K, Han K, Kristo B, Raman S, Said J, Belledegrun A, Schulam P (2005) The Effects of Intentional Cryoablation and Radio Frequency Ablation of Renal Tissue Involving the Collecting System in a Porcine Model. The Journal of Urology 173: 1368-1374.CrossRefGoogle Scholar
  81. Jensen AW, Wilson SR, Schuster DI (1996) Biological applications of fullerenes. Bioorganic and Medicinal Chemistry 4: 767-779. CrossRefGoogle Scholar
  82. Jiang W, Yang HC, Yang SY, Horng HE, Hung JC, Chen YC, Hong CY (2004) Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompati-ble. Journal of Magnetism and Magnetic Materials 283: 210-214. CrossRefGoogle Scholar
  83. Jonsson B, Nonat A, Labbez C, Cabane B, Wennerstrom H (2005) Controlling the cohesion of cement paste. Langmuir 21: 9211-9221. CrossRefGoogle Scholar
  84. Kam NWS, O’Connell M, Wisdom JA, Dai HJ (2005) Carbon nanotubes as multifunctional bio-logical transporters and near-infrared agents for selective cancer cell destruction. Proceedings of the National Academy of Sciences of the United States of America 102: 11600-11605.CrossRefGoogle Scholar
  85. Kamat JP, Devasagayam TPA, Priyadarsini KI, Mohan H, Mittal JP (1998) Oxidative damage induced by the fullerene C-60 on photosensitization in rat liver microsomes. Chemico-Biological Interactions 114: 145-159. CrossRefGoogle Scholar
  86. Kasermann F, Kempf C (1998) Buckminsterfullerene and photodynamic inactivation of viruses. Reviews in Medical Virology 8: 143-151. CrossRefGoogle Scholar
  87. Kempa K, Rybczynski J, Huang ZP, Gregorczyk K, Vidan A, Kimball B, Carlson J, Benham G, Wang Y, Herczynski A, Ren ZF (2007) Carbon nanotubes as optical antennae. Advanced Materials 19: 421. CrossRefGoogle Scholar
  88. Kim BM, Qian S, Bau HH (2005) Filling carbon nanotubes with particles. Nano Letters 5: 873-878. CrossRefGoogle Scholar
  89. Kluza J, Marchetti P, Gallego MA, Lancel S, Fournier C, Loyens A, Beauvillain JC, Bailly C (2004) Mitochondrial proliferation during apoptosis induced by anticancer agents: effects of doxorubicin and mitoxantrone on cancer and cardiac cells. Oncogene 23: 7018-7030.CrossRefGoogle Scholar
  90. Koeppe R, Sariciftci NS (2006) Photoinduced charge and energy transfer involving fullerene derivatives. Photochemical and Photobiological Sciences 5: 1122-1131. CrossRefGoogle Scholar
  91. Kouklin N, Tzolov M, Straus D, Yin A, Xu JM (2004) Infrared absorption properties of carbon nanotubes synthesized by chemical vapor deposition. Applied Physics Letters 85: 4463-4465. CrossRefGoogle Scholar
  92. Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE (1985) C-60 - Buckminsterfullerene. Nature 318: 162-163. CrossRefGoogle Scholar
  93. Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF (1991) Radical reactions of C60. Science 254: 1183-1185.CrossRefGoogle Scholar
  94. Kubler AC, de Carpentier J, Hopper C, Leonard AG, Putnam G (2001) Treatment of squamous cell carcinoma of the lip using Foscan-mediated photodynamic therapy. International Journal of Oral and Maxillofacial Surgery 30: 504-509. CrossRefGoogle Scholar
  95. Kumar TP, Ramesh R, Lin YY, Fey GTK (2004) Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries. Electrochemistry Communications 6: 520-525.CrossRefGoogle Scholar
  96. Lamb LD, Huffman DR (1993) Fullerene production. Journal of Physics and Chemistry of Solids 54: 1635-1643. CrossRefGoogle Scholar
  97. Launay S, Fedorov AG, Joshi Y, Cao A, Ajayan PM (2006) Hybrid micro-nano structured thermal interfaces for pool boiling heat transfer enhancement. Microelectronics Journal 37: 1158-1164.CrossRefGoogle Scholar
  98. Levi N, Hantgan R, Lively M, Carroll D, Prasad G (2006) C60-Fullerenes: detection of intracellular photoluminescence and lack of cytotoxic effects. Journal of Nanobiotechnology 4: 14. CrossRefGoogle Scholar
  99. Levine EA, Stewart JH, Russell GB, Geisinger KR, Loggie BL, Shen P (2007) Cytoreductive sur-gery and intraperitoneal hyperthermic chemotherapy for peritoneal surface malignancy: expe-rience with 501 procedures. Journal of the American College of Surgeons 204: 943-953.CrossRefGoogle Scholar
  100. Li H, Wang DQ, Liu BL, Gao LZ (2004) Synthesis of a novel gelatin-carbon nanotubes hybrid hydrogel. Colloids and Surfaces B-Biointerfaces 33: 85-88. CrossRefGoogle Scholar
  101. Li Lb, Luo Rc, Liao Wj, Zhang Mj, Luo Yl, Miao Jx (2006) Clinical study of Photofrin photody-namic therapy for the treatment of relapse nasopharyngeal carcinoma. Photodiagnosis and Photodynamic Therapy 3: 266-271.Google Scholar
  102. Li G, Mianami N (2003) Increase of photoluminescence from fullerenes-doped poly (alkyl meth-acrylate) under laser irradiation. Journal of Photoluminescence 104: 207.CrossRefGoogle Scholar
  103. Lin YL, Lei HY, Wen YY, Luh TY, Chou CK, Liu HS (2000) Light-independent inactivation of dengue-2 virus by carboxyfullerene C3 isomer. Virology 275: 258-262. CrossRefGoogle Scholar
  104. Liu J, Czerw R, Carroll DL (2005a) Large-scale synthesis of highly aligned nitrogen doped carbon nanotubes by injection chemical vapor deposition methods. Journal of Materials Research 20: 538-543. CrossRefGoogle Scholar
  105. Liu JW, Webster S, Carroll DL (2005b) Temperature and flow rate of NH3 effects on nitrogen content and doping environments of carbon nanotubes grown by injection CVD method. Journal of Physical Chemistry B 109: 15769-15774. CrossRefGoogle Scholar
  106. Lush RM, Mccune JS, Tetteh L, Thompson JA, Mahany JJ, Garland L, Suttle AB, Sullivan DM (2005) The absolute bioavailability of oral vinorelbine in patients with solid tumors. Cancer Chemotherapy and Pharmacology 56: 578-584. CrossRefGoogle Scholar
  107. Ma GB, Cheng WJ, Chen GH, Ming NB (2000) Orientation and photoluminescence of C-60 crystallites in C-60-polymethyl methacrylate films. Thin Solid Films 375: 292-295.CrossRefGoogle Scholar
  108. Ma GB, Yang YH, Chen GH (1998) Anomalous photoluminescence from C-60 polymethyl meth-acrylate films. Materials Letters 34: 377-382. CrossRefGoogle Scholar
  109. Maksimenko SA, Slepyan GY, Nemilentsau AM, Shuba MV (2008) Carbon nanotube antenna: far-field, near-field and thermal-noise properties. Physica E: Low-dimensional Systems and Nanostructures 40: 2360-2364. CrossRefGoogle Scholar
  110. Marchesan S, Da Ros T, Spalluto G, Balzarini J, Prato M (2005) Anti-HIV properties of cationic fullerene derivatives. Bioorganic and Medicinal Chemistry Letters 15: 3615-3618.CrossRefGoogle Scholar
  111. Matsumura S, Ajima K, Yudasaka M, Iijima S, Shiba K (2007) Dispersion of cisplatin-loaded carbon nanohorns with a conjugate comprised of an artificial peptide aptamer and polyethyl-ene glycol. Molecular Pharmacology. 4: 723-729. CrossRefGoogle Scholar
  112. Meng J, Kong H, Xu HY, Song L, Wang CY, Xie SS (2005) Improving the blood compatibility of polyurethane using carbon nanotubes as fillers and its implications to cardiovascular surgery. Journal of Biomedical Materials Research Part A 74A: 208-214.Google Scholar
  113. Menna E, Scorrano G, Maggini M, Cavallaro M, Della Negra F, Battagliarin M, Bozio R, Fantinel F, Meneghetti M (2003) Shortened single-walled nanotubes functionalized with poly(ethylene glycol): preparation and properties. Arkivoc 64-73.Google Scholar
  114. Milanesio ME, Alvarez MG, Rivarola V, Silber JJ, Durantini EN (2005) Porphyrin-fullerene C-60 dyads with high ability to form photoinduced charge-separated state as novel sensitizers for photodynamic therapy. Photochemistry and Photobiology 81: 891-897.CrossRefGoogle Scholar
  115. Misra A, Tyagi PK, Singh MK, Misra DS (2006) FTIR studies of nitrogen doped carbon nano-tubes. Diamond and Related Materials 15: 385-388. CrossRefGoogle Scholar
  116. Mittal JP (1995) Excited-States and Electron-Transfer Reactions of Fullerenes. Pure and Applied Chemistry 67: 103-110. CrossRefGoogle Scholar
  117. Mohamed F, Marchettini P, Stuart OA, Urano M, Sugarbaker PH (2003) Thermal enhancement of new chemotherapeutic agents at moderate hyperthermia. Annals of Surgical Oncology 10: 463-468. CrossRefGoogle Scholar
  118. Monteiro-Riviere NA, Inman AO, Wang YY, Nemanich RJ (2005a) Surfactant effects on carbon nanotube interactions with human keratinocytes. Nanomedicine: Nanotechnology, Biology and Medicine 1: 293-299. CrossRefGoogle Scholar
  119. Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005b) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicology Letters 155: 377-384. CrossRefGoogle Scholar
  120. Monthioux M (2002) Filling single-wall carbon nanotubes. Carbon 40: 1809-1823. CrossRefGoogle Scholar
  121. Monti D, Moretti L, Salvioli S, Straface E, Malorni W, Pellicciari R, Schettini G, Bisaglia M, Pincelli C, Fumelli C, Bonafe M, Franceschi C (2000) C60 carboxyfullerene exerts a protective activity against oxidative stress-induced apoptosis in human peripheral blood mononuclear cells. Biochemical and Biophysical Research Communications 277: 711-717.CrossRefGoogle Scholar
  122. Mroz P, Pawlak A, Satti M, Lee H, Wharton T, Gali H, Sarna T, Hamblin MR (2007) Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism. Free Radical Biology and Medicine 43: 711-719. CrossRefGoogle Scholar
  123. Murakami T, Ajima K, Miyawaki J, Yudasaka M, Iijima S, Shiba K (2004) Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Molecular Pharmacology 1: 399-405. CrossRefGoogle Scholar
  124. Nadarajan SB, Katsikis PD, Papazoglou ES (2007) Loading carbon nanotubes with viscous fluids and nanoparticles - a simpler approach. Applied Physics A-Materials Science & Processing 89: 437-442. CrossRefGoogle Scholar
  125. Nakajima N, Nishi C, Li FM, Ikada Y (1996) Photo-induced cytotoxicity of water-soluble fuller-ene. Fullerene Science and Technology 4: 1-19. Google Scholar
  126. Nakamura E, Tokuyama H, Yamago S, Shiraki T, Sugiura Y (1996) Biological activity of water-soluble fullerenes. Structural dependence of DNA cleavage, cytotoxicity, and enzyme inhibi-tory activities including HIV-protease inhibition. Bulletin of the Chemical Society of Japan 69: 2143-2151. Google Scholar
  127. Neuberger T, Schopf B, Hofmann H, Hofmann M, von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials 293: 483-496. CrossRefGoogle Scholar
  128. Novikova LN, Mosahebi A, Wiberg M, Terenghi G, Kellerth JO, Novikov LN (2006) Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. Journal of Biomedical Materials Research Part A 77A: 242-252.Google Scholar
  129. O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma JP, Hauge RH, Weisman RB, Smalley RE (2002) Band gap fluo-rescence from individual single-walled carbon nanotubes. Science 297: 593-596.CrossRefGoogle Scholar
  130. Ohno T, Matsuishi K, Onari S (1997) Effects of laser irradiation on photoluminescence of C-60 single crystal with/without air exposure. Solid State Communications 101: 785-789.CrossRefGoogle Scholar
  131. Panchapakesan B, Lu S, Sivakumar K, Teker K, Cesarone G, Wickstrom E (2005) Single wall car-bon nanotube nanobomb agents for killing breast cancer cells. Nanobiotechnology 1: 133-140.CrossRefGoogle Scholar
  132. Park KJ, Jung D (2007) Enhancement of nucleate boiling heat transfer using carbon nanotubes. International Journal of Heat and Mass Transfer 50: 4499-4502. CrossRefGoogle Scholar
  133. Pearce JA, Thomsen S (1999) Kinetic models of tissue perfusion processes. Proceedings of Laser Surgery (SPIE): Advanced Characterization, Therapeutics, and Systems III 1643: 251.Google Scholar
  134. Pech O, Gossner L, May A, Rabenstein T, Vieth M, Stolte M, Berres M, Ell C (2005) Long-term results of photodynamic therapy with 5-aminolevulinic acid for superficial Barrett’s cancer and high-grade intraepithelial neoplasia. Gastrointestinal Endoscopy 62: 24-30.CrossRefGoogle Scholar
  135. Pinthus JH, Bogaards A, Weersink R, Wilson BC, Trachtenberg J (2006) Photodynamic therapy for urological malignancies: past to current approaches. Journal of Urology 175: 1201-1207.CrossRefGoogle Scholar
  136. Ponce AM, Vujaskovic Z, Yuan F, Needham D, Dewhirst MW (2006) Hyperthermia mediated liposomal drug delivery. International Journal of Hyperthermia 22: 205-213. CrossRefGoogle Scholar
  137. Poncharal P, Berger C, Yi Y, Wang ZL, de Heer WA (2002) Room temperature ballistic conduction in carbon nanotubes. Journal of Physical Chemistry B 106: 12104-12118.CrossRefGoogle Scholar
  138. Porter AE, Muller K, Skepper J, Midgley P, Welland M (2006) Uptake of C-60 by human mono-cyte macrophages, its localization and implications for toxicity: studied by high resolution electron microscopy and electron tomography. Acta Biomaterialia 2: 409-419.CrossRefGoogle Scholar
  139. Portney NG, Ozkan M (2006) Nano-oncology: drug delivery, imaging, and sensing. Analytical and Bioanalytical Chemistry 384: 620-630. CrossRefGoogle Scholar
  140. Rajagopalan P, Wudl F, Schinazi RF, Boudinot FD (1996) Pharmacokinetics of a water-soluble fullerene in rats. Antimicrobial Agents and Chemotherapy 40: 2262-2265.Google Scholar
  141. Rancan F, Helmreich M, Molich A, Jux N, Hirsch A, Roder B, Witt C, Bohm F (2005) Fullerene-pyropheophorbide a complexes as sensitizer for photodynamic therapy: uptake and photo-induced cytotoxicity on Jurkat cells. Journal of Photochemistry and Photobiology B: Biology 80: 1-7.CrossRefGoogle Scholar
  142. Reddy LH (2005) Drug delivery to tumours: recent strategies. Journal of Pharmacy and Pharmacology 57: 1231-1242. CrossRefGoogle Scholar
  143. Reingruber B, Boettcher MI, Klein P, Hohenberger W, Pelz JOW (2007) Hyperthermic intraperi-toneal chemoperfusion is an option for treatment of peritoneal carcinomatosis in children. Journal of Pediatric Surgery 42: e17-e21.Google Scholar
  144. Saito R, Gruneis A, Samsonidze GG, Dresselhaus G, Dresselhaus MS, Jorio A, Cancado LG, Pimenta MA, Souza AG (2004) Optical absorption of graphite and single-wall carbon nano-tubes. Applied Physics A-Materials Science and Processing 78: 1099-1105.CrossRefGoogle Scholar
  145. Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin VL (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Letters 4: 1881-1887. CrossRefGoogle Scholar
  146. Scharff P, Risch K, Carta-Abelmann L, Dmytruk IM, Bilyi MM, Golub OA, Khavryuchenko AV, Buzaneva EV, Aksenov VL, Avdeev MV, Prylutskyy YI, Durov SS (2004) Structure of C-60 fullerene in water: spectroscopic data. Carbon 42: 1203-1206. CrossRefGoogle Scholar
  147. Scharff P, Siegmund C, Risch K, Lysko I, Lysko O, Zherebetskyy A, Ivanisik A, Gorchinskiy A, Buzaneva E (2005) Characterization of water-soluble fullerene C-60 oxygen and hydroxyl group derivatives for photosensitizers. Fullerenes Nanotubes and Carbon Nanostructures 13: 497-509.CrossRefGoogle Scholar
  148. Schonenberger C, Forro L (2000) Multiwall carbon nanotubes. Physics World 13: 37-41.Google Scholar
  149. Scott JHJ, Majetich SA (1995) Morphology, Structure, and Growth of Nanoparticles Produced in A Carbon-Arc. Physical Review B 52: 12564-12571. CrossRefGoogle Scholar
  150. Scrivens WA, Tour, J, Creek, K, Pirisi, L (1994) Synthesis of 14C-labeled C60, its suspensions in water. Preparation and Characterization. J.American Chemical Society 116, 4517-4518.Google Scholar
  151. Ref Type: GenericGoogle Scholar
  152. Sears A, Batra RC (2006) Buckling of multiwalled carbon nanotubes under axial compression. Physical Review B 73(8): 11. Google Scholar
  153. Sharman WM, Allen CM, van Lier JE (1999) Photodynamic therapeutics: basic principles and clinical applications. Drug Discovery Today 4: 507-517. CrossRefGoogle Scholar
  154. Shen P, Hawksworth J, Lovato J, Loggie BW, Geisinger KR, Fleming RA, Levine EA (2004) Cytoreductive surgery and intraperitoneal hyperthermic chemotherapy with mitomycin C for peritoneal carcinomatosis from nonappendiceal colorectal carcinoma. Annals of Surgical Oncology 11: 178-186. CrossRefGoogle Scholar
  155. Shenoy DB, Amiji MA (2005) Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nano-particles for targeted delivery of tamoxifen in breast cancer. International Journal of Pharmaceutics 293: 261-270. CrossRefGoogle Scholar
  156. Sinani VA, Gheith MK, Yaroslavov AA, Rakhnyanskaya AA, Sun K, Mamedov AA, Wicksted JP, Kotov NA (2005) Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations. Journal of the American Chemical Society 127: 3463-3472.CrossRefGoogle Scholar
  157. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nano-tube radiotracers. Proceedings of the National Academy of Sciences of the United States of America 103: 3357-3362. CrossRefGoogle Scholar
  158. Sitharaman B, Kissell KR, Hartman KB, Tran LA, Baikalov A, Rusakova I, Sun Y, Khant HA, Ludtke SJ, Chiu W, Laus S, Toth E, Helm L, Merbach AE, Wilson LJ (2005) Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chemical Communications 3915-3917.Google Scholar
  159. So G, Karotki A, Verma S, Pritzker K, Wilson B, Chiang LY (2006) Comparison of singlet oxy-gen generation efficiency between water-soluble C60-diphenylaminofluorene conjugates and molecular micelle-like FC4S. Journal of Macromolecular Science Part A-Pure and Applied Chemistry 43: 1955-1963. CrossRefGoogle Scholar
  160. Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J, Hoebeke J, Duguet E, Colombo P, Couvreur P (2005) Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjugate Chemistry 16: 1181-1188.CrossRefGoogle Scholar
  161. Stewart JH, Shen P, Levine EA (2005) Intraperitoneal hyperthermic chemotherapy for peritoneal sur-face malignancy: current status and future directions. Annals of Surgical Oncology 12: 765-777.CrossRefGoogle Scholar
  162. Stewart JH, Shen P, Russell GB, Bradley RF, Hundley JC, Loggie BL, Geisinger KR, Levine EA (2006) Appendiceal neoplasms with peritoneal dissemination: outcomes after cytoreductive sur-gery and intraperitoneal hyperthermic chemotherapy. Annals of Surgical Oncology 13: 624-634.CrossRefGoogle Scholar
  163. Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, Heyder J, Schulz H (2006) Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environmental Health Perspectives 114: 328-333.CrossRefGoogle Scholar
  164. Sugarbaker PH, Mora JT, Carmignani P, Stuart OA, Yoo D (2005) Update on chemotherapeutic agents utilized for perioperative intraperitoneal chemotherapy. Oncologist 10: 112-122.CrossRefGoogle Scholar
  165. Tabata Y, Murakami Y, Ikada Y (1997) Photodynamic effect of polyethylene glycol-modified fullerene on tumor. Japanese Journal of Cancer Research 88: 1108-1116.Google Scholar
  166. Tachibana M, et al. (1996) Photoluminescence and structural defects of C60 crystals. Journal of Photoluminescence 66 & 67: 249. CrossRefGoogle Scholar
  167. Tanielian C, Schweitzer C, Mechin R, Wolff C (2001) Quantum yield of singlet oxygen production by monomeric and aggregated forms of hematoporphyrin derivative. Free Radical Biology and Medicine 30: 208-212. CrossRefGoogle Scholar
  168. Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties and applications of carbon nanotubes. Annual Review of Materials Research 33: 419-501.CrossRefGoogle Scholar
  169. Tessonnier JP, Pesant L, Ehret G, Ledoux MJ, Pham-Huu C (2005) Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. Applied Catalysis A: General 288: 203-210. CrossRefGoogle Scholar
  170. Tkac J, Ruzgas T (2006) Dispersion of single walled carbon nanotubes. Comparison of different dispersing strategies for preparation of modified electrodes toward hydrogen peroxide detec-tion. Electrochemistry Communications 8: 899-903. Google Scholar
  171. Toh S, Kaneko K, Hayashi Y, Tokunaga T, Moon WJ (2004) Microstructure of metal-filled car-bon nanotubes. Journal of Electron Microscopy 53: 149-155. CrossRefGoogle Scholar
  172. Torti S, Byrne F, Whelan O, Levi N, Ucer B, Schmid M, Torti F, Akman S, Liu J, Ajayan P, Nalamasu O, Carroll D (2007) Thermal ablation therapeutics based on CNx multi-walled nan-otubes. International Journal of Nanomedicine 2(4): 707-714. Google Scholar
  173. Trehin R, Figueiredo JL, Pittet MJ, Weissleder R, Josephson L, Mahmood U (2006) Fluorescent nanoparticle uptake for brain tumor visualization. Neoplasia 8: 302-311.CrossRefGoogle Scholar
  174. Tsao N, Luh TY, Chou CK, Chang TY, Wu JJ, Liu CC, Lei HY (2002) In vitro action of carboxy-fullerene. Journal of Antimicrobial Chemotherapy 49: 641-649. CrossRefGoogle Scholar
  175. Ueng TH, Kang JJ, Wang HW, Cheng YW, Chiang LY (1997) Suppression of microsomal cyto-chrome P450-dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C60. Toxicology Letters 93: 29-37.CrossRefGoogle Scholar
  176. Vileno B, Lekka M, Sienkiewicz A, Marcoux P, Kulik AJ, Kasas S, Catsicas S, Graczyk A, Forro L (2005) Singlet oxygen ( (1)Delta(g) )-mediated oxidation of cellular and subcellular compo-nents: ESR and AFM assays. Journal of Physics-Condensed Matter 17:S1471-S1482.Google Scholar
  177. Wang IC, Tai LA, Lee DD, Kanakamma PP, Shen CKF, Luh TY, Cheng CH, Hwang KC (1999) C-60 and water-soluble fullerene derivatives as antioxidants against radical-initiated lipid per-oxidation. Journal of Medicinal Chemistry 42: 4614-4620. CrossRefGoogle Scholar
  178. Wang X, Sun B, Yang HK (2006) Stability of multi-walled carbon nanotubes under combined bending and axial compression loading. Nanotechnology 17: 815-823. CrossRefGoogle Scholar
  179. Wang Y, Kempa K, Kimball B, Carlson JB, Benham G, Li WZ, Kempa T, Rybczynski J, Herczynski A, Ren ZF (2004a) Receiving and transmitting light-like radio waves: antenna effect in arrays of aligned carbon nanotubes. Applied Physics Letters 85: 2607-2609.CrossRefGoogle Scholar
  180. Wang YW, Xie XY, Wang XD, Ku G, Gill KL, O’Neal DP, Stoica G, Wang LV (2004b) Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Letters 4: 1689-1692. CrossRefGoogle Scholar
  181. Weissleder R (2001) A clearer vision for in vivo imaging. Nature Biotechnology 19: 316-317. CrossRefGoogle Scholar
  182. Wu J, Wei W, Wang LY, Su ZG, Ma GH (2007) A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials 28: 2220-2232.CrossRefGoogle Scholar
  183. Xin HJ, Woolley AT (2005) High-yield DNA-templated assembly of surfactant-wrapped carbon nanotubes. Nanotechnology 16: 2238-2241. CrossRefGoogle Scholar
  184. Xu JF, Xiao M, Czerw R, Carroll DL (2004) Optical limiting and enhanced optical nonlinearity in boron-doped carbon nanotubes. Chemical Physics Letters 389: 247-250.CrossRefGoogle Scholar
  185. Xu JZ, Zhu JJ, Wu Q, Hu Z, Chen HY (2003) An amperometric biosensor based on the coimmo-bilization of horseradish peroxidase and methylene blue on a carbon nanotubes modified elec-trode. Electroanalysis 15: 219-224. CrossRefGoogle Scholar
  186. Yang XL, Fan CH, Zhu HS (2002) Photo-induced cytotoxicity of malonic acid [C-60]fullerene derivatives and its mechanism. Toxicology In Vitro 16: 41-46. CrossRefGoogle Scholar
  187. Yang XL, Huang C, Qiao XG, Yao L, Zhao DX, Tan X (2007) Photo-induced lipid peroxidation of erythrocyte membranes by a bis-methanophosphonate fullerene. Toxicology In Vitro 21: 1493-1498. CrossRefGoogle Scholar
  188. Yim TJ, Liu JW, Lu Y, Kane RS, Dordick JS (2005) Highly active and stable DNAzyme - Carbon nanotube hybrids. Journal of the American Chemical Society 127: 12200-12201.CrossRefGoogle Scholar
  189. Yu C, Canteenwala T, Chiang LY, Wilson B, Pritzker K (2005) Photodynamic effect of hydrophilic C60-derived nanostructures for catalytic antitumoral antibacterial applications. Synthetic Metals 153: 37-40. CrossRefGoogle Scholar
  190. Zhang RY, Wang XM, Wu CH, Song M, Li JY, Lv G, Zhou J, Chen C, Dai YY, Gao F, Fu DG, Li XO, Guan ZQ, Chen BA (2006) Synergistic enhancement effect of magnetic nanoparticles on anticancer drug accumulation in cancer cells. Nanotechnology 17: 3622-3626.CrossRefGoogle Scholar
  191. Zhang XZ, Wu DQ, Sun GM, Chu CC (2003) Novel biodegradable and thermosensitive Dex-AI/ PNIPAAm hydrogel. Macromolecular Bioscience 3: 87-91. CrossRefGoogle Scholar
  192. Zhao B, Hu H, Yu AP, Perea D, Haddon RC (2005) Synthesis and characterization of water solu-ble single-walled carbon nanotube graft copolymers. Journal of the American Chemical Society 127: 8197-8203. CrossRefGoogle Scholar
  193. Zhou XD, Ren XL, Zhang J, He GB, Zheng MJ, Tian X, Li L, Zhu T, Zhang M, Wang L, Luo W (2007) Therapeutic response assessment of high intensity focused ultrasound therapy for uter-ine fibroid: utility of contrast-enhanced ultrasonography. European Journal of Radiology 62: 289-294.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Nicole H. Levi-Polyachenko
    • 1
  • David L. Carroll
    • 2
  • John H. StewartIV
    • 3
  1. 1.Department of Plastic and Reconstructive SurgeryWake Forest University Health SciencesWinston-SalemUSA
  2. 2.Center for Nanotechnology and Molecular Materials, Department of Physics, 100 Olin Physical LaboratoryWake Forest UniversityWinston-SalemUSA
  3. 3.Department of General Surgery, Section on Surgical OncologyWake Forest University Health SciencesWinston-SalemUSA

Personalised recommendations