Skip to main content

DNA-Based Synthesis and Assembly of Organized Iron Oxide Nanostructures

  • Conference paper
Nanomaterials for Application in Medicine and Biology

Part of the book series: NATO Science for Peace and Security Series ((NAPSB))

Abstract

Organized bio-inorganic and hybrid bio-organic-inorganic nanostructures consisting of iron oxide nanoparticles and DNA complexes have been formed using methods based on biomineralization, interfacial and bulk phase assembly, ligand exchange and substitution, Langmuir-Blodgett technique, DNA templating and scaffolding. Interfacially formed planar DNA complexes with water-insoluble amphiphilic polycation or intercalator Langmuir monolayers were prepared and deposited on solid substrates to form immobilized DNA complexes. Those complexes were then used for the synthesis of organized DNA-based iron oxide nanostructures. Planar net-like and circular nanostructures of magnetic Fe3O4 nanoparticles were obtained via interaction of cationic colloid magnetite nanoparticles with preformed immobilized DNA/amphiphilic polycation complexes of net-like and toroidal morphologies. The processes of the generation of iron oxide nanoparticles in immobilized DNA complexes via redox synthesis with various iron sources of biological (ferritin) and artificial (FeCl3) nature have been studied. Bulk-phase complexes of magnetite nanoparticles with biomolecular ligands (DNA, spermine) were formed and studied. Novel nano-scale organized bio-inorganic nanostructures – free-floating sheet-like spermine/magnetite nanoparticle complexes and DNA/spermine/magnetite nanoparticle complexes were synthesized in bulk aqueous phase and the effect of DNA molecules on the structure of complexes was discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. B. Frankel and R. P. Blakemore (eds.), Iron biominerals, (Plenum, New York, 1991).

    Google Scholar 

  2. S. Mann, Biomineralization: principles and concepts in bioinorganic materials chemistry (Oxford University Press, New York, 2001).

    Google Scholar 

  3. E. Bauerlein (ed.), The biomineralization of nano- and micro-structures (Wiley-VCH, Weinheim, 2000).

    Google Scholar 

  4. W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, and A. P. Alivisatos, Biological applications of colloidal nanocrystals, Nanotechnology 14, R15–R27 (2003).

    Article  ADS  CAS  Google Scholar 

  5. N. L. Rosi and C. A. Mirkin, Nanostructures in biodiagnostics, Chem. Rev. 105(4), 1547–1562 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. C. M. Niemeyer, and C. A. Mirkin (eds.), Nanobiotechnology: concepts, applications and perspectives (Wiley-VCH, Weinheim, 2004).

    Google Scholar 

  7. L. A. Bauer, N. S. Birenbaum, and G. J. Meyer, Biological applications of high aspect ratio nanoparticles, J. Mater. Chem. 14, 517–526 (2004).

    Article  CAS  Google Scholar 

  8. J. Hahm and C. M. Lieber, Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors, Nano Lett. 4(1), 51–54 (2004).

    Article  ADS  CAS  Google Scholar 

  9. J. Gamby, J.-P. Abid, M. Abid, J.-P. Ansermet, and H. H. Girault, Nanowires network for biomolecular detection using contactless impedance tomoscopy technique, Anal. Chem. 78(15), 5289–5295 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, and R. S. Williams, Sequence-specific label-free DNA sensors based on silicon nanowires, Nano Lett. 4(2), 245–247 (2004).

    Article  ADS  CAS  Google Scholar 

  11. B. Munge, G. Liu, G. Collins, and J. Wang, Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies, Anal. Chem. 77(14), 4662–4666 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. J. Wang, G. Liu, and M. R. Jan, Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events, J. Am. Chem. Soc. 126(10), 3010–3011 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. H.-M. So, K. Won, Y. Hwan Kim, B.-K. Kim, B. H. Ryu, P. S. Na, H. Kim, and J.-O. Lee, Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements, J. Am. Chem. Soc. 127(34), 11906–11907 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. G. B. Khomutov, L. V. Belovolova, S. P. Gubin, V. V. Khanin, A. Yu. Obydenov, A. N. Sergeev-Cherenkov, E. S. Soldatov, and A. S. Trifonov, STM study of morphology and electron transport features in cytochrome c and nanocluster molecule monolayers, Bioelectrochemistry 55(1–2), 177–181 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. L. Andolfi and S. Cannistraro, Conductive atomic force microscopy study of plastocyanin molecules adsorbed on gold electrode, Surf. Sci. 598(1–3), 68–77 (2005).

    Article  ADS  CAS  Google Scholar 

  16. R. T. Hill, J. L. Lyon, R. A. Keith J. Stevenson, and J. B. Shear, Microfabrication of three-dimensional bioelectronic architectures, J. Am. Chem. Soc. 127(30), 10707–10711 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. N. C. Seeman, DNA in a material world, Nature 421, 427–431 (2003).

    Article  PubMed  ADS  MathSciNet  CAS  Google Scholar 

  18. J. Richter, Metallization of DNA, Physica. E 16(2), 157–173 (2003).

    Article  ADS  CAS  Google Scholar 

  19. L. Berti, A. Alessandrini, and P. Facci, DNA-templated photoinduced silver deposition, J. Am. Chem. Soc. 127(32), 11216–11217 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. G. Wei, H. Zhou, Z. Liu, Y. Song, L. Wang, L. Sun, and Z. Li, One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network, J. Phys. Chem. B. 109(18), 8738–8743 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. R. Möller, R. D. Powell, J. F. Hainfeld, and W. Fritzsche, Enzymatic control of metal deposition as key step for a low-background electrical detection for DNA chips, Nano Lett. 5(7), 1475–1482 (2005).

    Article  PubMed  ADS  CAS  Google Scholar 

  22. W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, and A. P. Alivisatos, Biological applications of colloidal nanocrystals, Nanotechnology 14, R15–R27 (2003).

    Article  ADS  CAS  Google Scholar 

  23. P. Frayssinet, N. Rouquet, and D. Mathon, Bone cell transfection in tissue culture using hydroxyapatite microparticles, J. Biomed. Mater. Res. A 79(2) 225–228 (2006).

    PubMed  Google Scholar 

  24. A. Maitra, Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy, Expert Rev. Mol. Diagnostics 5(6), 893–905 (2005).

    Article  CAS  Google Scholar 

  25. A. K. Salem, P. C. Searson, and K. W. Leong, Multifunctional nanorods for gene delivery, Nat. Mater. 2(10) 668–671 (2003).

    Article  PubMed  ADS  CAS  Google Scholar 

  26. K. K. Sandhu, C. M. McIntosh, J. M. Simard, S. W. Smith, and V. M. Rotello, Gold nanoparticle-mediated transfection of mammalian cells, Bioconjug. Chem. 13(1), 3–6 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. V. I. Kulkarni, V. S. Shenoy, S. S. Dodiya, T. H. Rajyaguru, and R. R. Murthy, Role of calcium in gene delivery, Expert Opin. on Drug Delivery 3(2), 235–245 (2006).

    Article  CAS  Google Scholar 

  28. E. H. Chowdhury, and T. Akaike, Bio-functional inorganic materials: an attractive branch of gene-based nano-medicine delivery for 21st century, Curr. Gene Ther. 5(6), 669–676 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. K. Keren, R. S. Berman, E. Buchstab, U. Sivan, and E. Braun, DNA-templated carbon nanotube field-effect transistor, Science 302, 1380–1382 (2003).

    Article  PubMed  ADS  CAS  Google Scholar 

  30. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature 382, 607–609 (1996).

    Article  PubMed  ADS  CAS  Google Scholar 

  31. A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez Jr., and P. G. Schultz, Organization of nanocrystal molecules using DNA, Nature 382, 609–611 (1996).

    Article  PubMed  ADS  CAS  Google Scholar 

  32. J. K. N. Mbindyo, B. D. Reiss, B. R. Martin, C. D. Keating, M. J. Natan, and T. E. Mallouk, DNA-directed assembly of gold nanowires on complementary surfaces, Adv. Mater. 14(4), 249–254 (2001).

    Article  Google Scholar 

  33. M. Li, and S. Mann, DNA-directed assembly of multifunctional nanoparticle networks using metallic and bioinorganic building blocks, J. Mater. Chem. 14(14), 2260–2263 (2004).

    Article  CAS  Google Scholar 

  34. J. L. Coffer, S. R. Bigham, X. Li, R. F. Pinizzotto, Y. G. Rho, R. M. Pirtle, and I. L. Pirtle, Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA, Appl. Phys. Lett. 69(25), 3851–3853 (1996).

    Article  ADS  CAS  Google Scholar 

  35. W. U. Dittmer, and F. C. Simmel, Chains of semiconductor nanoparticles templated on DNA, Appl. Phys. Lett. 85(4), 633–635 (2004).

    Article  ADS  CAS  Google Scholar 

  36. S. Rath, G. B. N. Chainy, S. Nozaki, S. N. Sahu, DNA template-driven synthesis of HgTe nanoparticles, Physica. E 30(1–2), 182–185 (2005).

    ADS  CAS  Google Scholar 

  37. G. B. Khomutov, M. N. Antipina, A. N. Sergeev-Cherenkov, A. A. Rakhnyanskaya, M. Artemyev, D. Kisiel, R. V. Gainutdinov, A. L. Tolstikhina, and V. V. Kislov, Organized planar nanostructures via interfacial self-assembly and DNA templating, Int. J. Nanosci. 3(1/2) 65–74 (2004).

    Article  CAS  Google Scholar 

  38. D. Nyamjav, and A. Ivanisevic, Templates for DNA-templated Fe3O4 nanoparticles, Biomaterials 26(15), 2749–2757 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. I. Safarik, and M. Safarikova, Magnetic nanoparticles and biosciences, Chemical Mon. 133, 737–759 (2002).

    CAS  Google Scholar 

  40. R. B. Frankel, R.P. Blakemore, and R.S. Wolfe magnetite in freshwater magnetotactic bacteria, Science 203(4387), 1355–135 (1979).

    Article  PubMed  ADS  CAS  Google Scholar 

  41. M. P. Pileni, (ed.) Nanocrystals forming mesoscopic structures (Wiley-VCH, Weinheim, 2005).

    Google Scholar 

  42. S. F. Dumestre, S. Martinez, D. Zitoun, M.-C. Fromen, M.-J. Casanove, P.Lecante, M. Respaud, A. Serres, R. E. Benfield, C. Amiens, and B. Chaudret, Magnetic nanoparticles through organometallic synthesis: evolution of the magnetic properties from isolated nanoparticles to organised nanostructures, Faraday Discuss. 125, 265–278, (2004).

    Article  PubMed  CAS  Google Scholar 

  43. Y.-W. Jun, J.-S Choi, and J. Cheon, Heterostructured magnetic nanoparticles: their versatility and high performance capabilities, Chem. Commun. 1203–1214 (2007).

    Google Scholar 

  44. G. Schmid (ed.) Nanoparticles–from theory to applications (Wiley VCH, Weinheim, 2004).

    Google Scholar 

  45. D. L. Leslie-Pelecky and R. D. Rieke, Magnetic properties of nanostructured materials, Chem. Mater. 8(8), 1770–1783 (1996).

    Article  CAS  Google Scholar 

  46. X. Batlle and A. Labarta. Finite-size effects in fine particles: magnetic and transport properties, J. Phys. D 35, R15 (2002).

    Article  ADS  CAS  Google Scholar 

  47. J. L. Dormann and D. Fiorani (eds.), Magnetic properties of fine particles (Elsevier, Amsterdam, 1992).

    Google Scholar 

  48. R. H. Kodama, Magnetic nanoparticles, J. Magnetism Magn. Mater. 200(1–3), 359–372 (1999).

    Article  ADS  CAS  Google Scholar 

  49. S. P. Gubin, Yu. A. Koksharov, G. B. Khomutov, and G. Yu. Yurkov, Magnetic nanoparticles: preparation methods, structure and properties, Russ. Chem. Rev. 74 (6), 539–574 (2005).

    Article  CAS  Google Scholar 

  50. U. Schwertmann and R.M. Cornell, Iron oxides in the laboratory: preparation and characterization (VCH, Weinheim, Cambridge, 1991).

    Google Scholar 

  51. A. K. Gupta and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26(18), 3995–4021 (2005).

    Article  PubMed  CAS  Google Scholar 

  52. D. K. Kim, Y. Zhang, W. Voit, K. V. Rao, J. Kehr, B. Bjelke, and M. Muhammed, Superparamagnetic iron oxide nanoparticles for bio-medical applications, Scr. Materialia 44 (8–9), 1713–1717 (2001).

    Article  CAS  Google Scholar 

  53. Y. Zhang, N. Kohler, and M. Zhang, Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake, Biomaterials 23(7), 1553–1561 (2002).

    Article  PubMed  CAS  Google Scholar 

  54. C. C. Berry and A. S. G. Curtis, Functionalisation of magnetic nanoparticles for applications in biomedicine, J. Phys. D 36(13), R198–R206 (2003).

    Article  ADS  CAS  Google Scholar 

  55. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, Applications of magnetic nanoparticles in biomedicine, J. Phys. D 36(13), R167–R181 (2003).

    Article  ADS  CAS  Google Scholar 

  56. D. Schuler and R. B. Frankel, Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications, Appl. Microbiol. Biotechnol. 52(4), 464–473 (1999).

    Article  PubMed  CAS  Google Scholar 

  57. Y.-X. J. Wang, S. M. Hussain, and G. P. Krestin, Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging, Eur. Radiol. 11(11), 2319–2331 (2001).

    Article  PubMed  CAS  Google Scholar 

  58. D. Portet, B. Denizot, E. Rump, J.-J. Lejeune, and P. Jallet, Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents, J. Colloid Interface Sci. 238(1), 37–42 (2001).

    Article  PubMed  CAS  Google Scholar 

  59. E. X. Wu, and H. Tang, Applications of ultrasmall superparamagnetic iron oxide contrast agents in the MR study of animal models, NMR in Biomed. 17(7), 478–483 (2004).

    Article  Google Scholar 

  60. T. Osaka, T. Matsunaga, T. Nakanishi, A. Arakaki, D. Niwa, and H. Iida, Synthesis of magnetic nanoparticles and their application to bioassays, Anal. and Bioanal. Chem. 384(3), 593–600 (2006).

    Article  CAS  Google Scholar 

  61. M. Zrínyi, L. Barsi, and A. Büki, Ferrogel: a new magneto-controlled elastic medium, Polym. Gels and Networks 5(5), 415–427 (1997).

    Article  Google Scholar 

  62. C. Albornoz, and S. E. Jacobo, Preparation of a biocompatible magnetic film from an aqueous ferrofluid, J. Magn. Magn. Mater. 305(1), 12–15 (2006).

    Article  ADS  CAS  Google Scholar 

  63. D. C. F. Chan, D. B. Kirpotin, and P. A. Bunn, Jr., Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer, J. Magn. Magn. Mater. 122(1–3), 374–378 (1993).

    Article  ADS  CAS  Google Scholar 

  64. A. Jordan, R. Scholz, P. Wust, H. Schirra, S. Thomas, H. Schmidt, and R. Felix, Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro, J. Magn. Magn. Mater. 194(1), 185–196 (1999).

    Article  ADS  CAS  Google Scholar 

  65. A. Senyei, K. Widder, and G. Czerlinski, Magnetic guidance of drug-carrying microspheres, J. Appl. Phys. 49(6), 3578–3583 (1978).

    Article  ADS  CAS  Google Scholar 

  66. T. Kubo, T. Sugita, S. Shimose, Y. Nitta, Y. Ikuta, and T. Murakami, Targeted systemic chemotherapy using magnetic liposomes with incorporated adriamycin for osteosarcoma in hamsters, Int. J. of Oncol. 18(1), 121–125 (2001).

    CAS  Google Scholar 

  67. Ch. Alexiou, A. Schmidt, R. Klein, P. Hulin, Ch. Bergemann, and W. Arnold, Magnetic drug targeting: biodistribution and dependency on magnetic field strength, J. Magn. Magn. Mater. 252(1–3), 363–366 (2002).

    Article  ADS  CAS  Google Scholar 

  68. A. S. Lubbe, C. Bergemann, J. Brock, and D. G. McClure, Physiological aspects in magnetic drug-targeting, J. Magn. Magn. Mater. 194(1), 149–155 (1999).

    Article  ADS  CAS  Google Scholar 

  69. F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Kruger, B. Gansbacher, and C. Plank, Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo, Gene Ther. 9(2), 102–109 (2002).

    Article  PubMed  CAS  Google Scholar 

  70. C. Plank, U. Schillinger, F. Scherer, C. Bergemann, J.-S. Rémy, F. Krötz, M. Anton, J. Lausier, and J. Rosenecker, The magnetofection method: using magnetic force to enhance gene delivery, Biological Chem. 384(5), 737–747 (2003).

    Article  CAS  Google Scholar 

  71. Z. P. Xu, Z. Q. Hua, G. Q. Lu, and A. B. Yu, Inorganic nanoparticles as carriers for efficient cellular delivery, Chem. Eng. Sci. 61(3), 1027–1040 (2006).

    Article  CAS  Google Scholar 

  72. O. Olsvik, T. Popovic, E. Skjerve, K. S. Cudjoe, E. Hornes, J. Ugelstad, and M. Uhlen, Magnetic separation techniques in diagnostic microbiology, Clinical Microbiol. Rev. 7(1), 43–54 (1994).

    CAS  Google Scholar 

  73. W. Kemmner, G. Moldenhauer, P. Schlag, and R. Brossmer, Separation of tumor cells from a suspension of dissociated human colorectal carcinoma tissue by means of monoclonal antibody-coated magnetic beads, J. Immunol. Methods 147(2), 197–200 (1992).

    PubMed  CAS  Google Scholar 

  74. L. Josephson, J. Manuel Perez, and R. Weissleder, Magnetic nanosensors for the detection of oligonucleotide sequences, Angew. Chem. Int. Ed. 40(17), 3204–3206 (2001).

    Article  CAS  Google Scholar 

  75. A. K. Gupta, and A. S. G. Curtis, Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors, Biomaterials, 25(15), 3029–3040 (2004).

    Article  PubMed  CAS  Google Scholar 

  76. D. G. Shchukin, T. Shutava, E. Shchukina, G. B. Sukhorukov, and Y. M. Lvov, Modified polyelectrolyte microcapsules as smart defense systems, Chem. Mater. 16(18), 3446–3451 (2004).

    Article  CAS  Google Scholar 

  77. G. B. Khomutov, Interfacially formed organized planar inorganic, polymeric and composite nanostructures, Adv. Colloid Interface Sci. 111(1–2), 79–116(2004).

    Article  PubMed  CAS  Google Scholar 

  78. G. B. Khomutov, and Yu. A. Koksharov, Effects of organic ligands, electrostatic and magnetic interactions in formation of colloidal and interfacial inorganic nanostructures, Adv. Colloid Interface Sci. 122(1–3), 119–147 (2006).

    Article  PubMed  CAS  Google Scholar 

  79. G. B. Khomutov, Organized planar bio-molecular and hybrid bio-organic-inorganic nanostructures, in: Biocatalytic Technology and Nanotechnology, G. E. Zaikov (ed.), (Nova Science, Hauppauge, NY, 2004), pp. 1–28.

    Google Scholar 

  80. A. A. Yaroslavov, E. G. Yaroslavova, A. A. Rakhnyanskaya, F. M. Menger, V. A. and Kabanov, Modulation of interaction of polycations with the negative unilamellar vesicles, Colloids Surf. B 16(1), 29–43 (1999).

    Article  CAS  Google Scholar 

  81. G. B. Khomutov, T. V. Yurova, S. A. Yakovenko, V. V. Khanin, and E. S. Soldatov, Effect of stearic acid monolayer compression extent on the interface copper ions binding and clusters formation, Supramol. Sci. 4(3–4), 349–355 (1997).

    Article  CAS  Google Scholar 

  82. M. N. Antipina, R. V. Gainutdinov, A. A. Rachnyanskaya, A.L. Tolstikhina, T. V. Yurova, and G. B. Khomutov, Studies of nanoscale structural ordering in planar DNA complexes with amphiphilic mono- and polycations, Surf. Sci. 532–535, 1025–1033 (2003).

    Article  CAS  Google Scholar 

  83. G. B. Khomutov, M. N. Antipina, A. N. Sergeev-Cherenkov, T. V. Yurova, A. A. Rakhnyanskaya, V. V. Kislov, R. V. Gainutdinov, A. L. Tolstikhina, Interfacially-organized DNA/polycation complexes: a route to new planar polymeric and composite nanostructures, Mat. Sci. Eng. C. 23(6–8) 903–908 (2003).

    Article  CAS  Google Scholar 

  84. M. A. Batalia, E. Protozanova, R. B. Macgregor Jr., and D. A. Erie, Self-assembly of frayed wires and frayed-wire networks: nanoconstruction with multistranded DNA, Nano Lett. 2(4), 269–274 (2002).

    Article  ADS  CAS  Google Scholar 

  85. L. C. Gosule and J. A. Schellmann, Compact form of DNA induced by spermidine, Nature 259, 333–334 (1976).

    Article  PubMed  ADS  CAS  Google Scholar 

  86. T. H. Eickbush and E. N. Moudrianakis, The compaction of DNA helices into either continuous supercoils or folded-fiber rods and toroids, Cell 13(2), 295–306 (1978).

    Article  PubMed  CAS  Google Scholar 

  87. D. M. Lawson, P. J. Artymiuk, S. J. Yewdall, J. M. A. Smith, J. C. Livingstone, A. Treffry, A. Luzzago, S. Levi, P. Arosio, G. Cesareni, C. D. Thomas, W. V. Shaw, and P. M. Harrison, Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts, Nature 349, 541–544 (1991).

    Article  PubMed  ADS  CAS  Google Scholar 

  88. N. D. Chasteen, Mineralization in ferritin: an efficient means of iron storage J. Struct. Biol. 126(3), 182–194 (1999).

    Article  PubMed  CAS  Google Scholar 

  89. E. C. Theil, M. Matzapetakis, and X. Liu, Ferritins: iron/oxygen biominerals in protein nanocages, J. Biol. Inorg. Chem. 11(7), 803–810 (2006).

    Article  PubMed  CAS  Google Scholar 

  90. G. B. Khomutov and Yu. A. Koksharov, Nanofilm materials and the method for production of nanofilm materials, Patent pending RU2006147123 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Khomutov, G.B. (2008). DNA-Based Synthesis and Assembly of Organized Iron Oxide Nanostructures. In: Giersig, M., Khomutov, G.B. (eds) Nanomaterials for Application in Medicine and Biology. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6829-4_4

Download citation

Publish with us

Policies and ethics