Biocompatible Nanomaterials and Nanodevices Promising for Biomedical Applications

  • Izabela Firkowska
  • Suna Giannona
  • José A. Rojas-Chapana
  • Klaus Luecke
  • Oliver Brüstle
  • Michael Giersig
Part of the NATO Science for Peace and Security Series book series (NAPSB)

Abstract

Nanotechnology applied to biology requires a thorough understanding of how molecules, sub-cellular entities, cells, tissues, and organs function and how they are structured. The merging of nanomaterials and life science into hybrids of controlled organization and function is possible, assuming that biology is nanostructured, and therefore man-made nano-materials can structurally mimic nature and complement each other. By taking advantage of their special properties, nanomaterials can stimulate, respond to and interact with target cells and tissues in controlled ways to induce desired physiological responses with a minimum of undesirable effects. To fulfill this goal the fabrication of nano-engineered materials and devices has to consider the design of natural systems. Thus, engineered micro-nano-featured systems can be applied to biology and biomedicine to enable new functionalities and new devices. These include, among others, nanostructured implants providing many advantages over existing, conventional ones, nanodevices for cell manipulation, and nanosensors that would provide reliable information on biological processes and functions.

Keywords

Nanotechnology carbon nanotubes gold nanoparticles nanoporation tissue engineering biosensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56–58 (1991).CrossRefADSGoogle Scholar
  2. 2.
    L. Lacerda, A. Bianco, M. Prato, and K. Kostarelos, Carbon nanotubes as nanomedicines: from toxicology to pharmacology, Adv. Drug Deliv. Rev. 58(14), 1460–1470 (2006).CrossRefGoogle Scholar
  3. 3.
    S. Polizu, O. Savadogo, P. Poulin, and L. Yahia, Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology, J. Nanosci. Nanotechnol. 6(7), 1883–1904 (2006).CrossRefGoogle Scholar
  4. 4.
    N. Sinha and J. T. W. Yeow, Carbon nanotubes for biomedical applications, EEE Trans Nanobiosci. 4(2), 180–195 (2005).CrossRefGoogle Scholar
  5. 5.
    J. A. Rojas-Chapana and M. Giersig, Multi walled carbon nanotubes and metallic nanoparticles and their application in biomedicine, J. Nanosci. Nanotechnol. 6, 316–321 (2006).Google Scholar
  6. 6.
    J. A. Rojas-Chapana, M. A. Correa-Duarte, Z. Ren, K. Kempa, and M. Giersig, Enhanced introduction of gold nanoparticles into vital acidothiobacillus ferrooxidans by carbon nanotube-based microwave electroporation, Nano Lett. 4(5), 985–988 (2004).CrossRefADSGoogle Scholar
  7. 7.
    J. A. Rojas-Chapana, J. Troszczynska, I. Firkowska, C. Morsczeck and M. Giersig, Multi-walled carbon nanotubes for plasmid delivery into Escherichia coli cells, Lab. Chip 5(5), 536–539 (2005).CrossRefGoogle Scholar
  8. 8.
    T. E. McKnight, A. V. Melechko, G. D. Griffin, M. A. Guillorn, V. I. Merkulov, F. Serna, D. K. Hensley, M. J. Doktycz, D. H. Lowndes, and M. L. Simpson, Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation, Nanotechnology 14(5), 551–556 (2003).CrossRefADSGoogle Scholar
  9. 9.
    D. Cai, J. M. Mataraza, Z. H. Qin, Z. Huang, J. Huang, T. C. Chiles, D. Carnahan, K. Kempa, and Z. Ren, Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing, Nat. Methods 2, 449–454 (2005).CrossRefGoogle Scholar
  10. 10.
    M. Prato, K. Kostarelos, A. Bianco, D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, and J. P. Briand, Functionalized carbon nanotubes for plasmid DNA gene delivery, Angew. Chem. Int. Ed. Engl. 43(39), 5242–5246 (2004).CrossRefGoogle Scholar
  11. 11.
    L. Gao, L. Nie, T. Wang, Y. Qin, Z. Guo, D. Yang, and X. Yan, Carbon nanotube delivery of the GFP gene into mammalian cells, ChemBioChem 7(2), 239–242 (2006).CrossRefGoogle Scholar
  12. 12.
    N. W. Kam, Z. Liu, and H. Dai, Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway, Angew. Chem. Int. Ed. Engl. 45(4), 577–581 (2006).CrossRefGoogle Scholar
  13. 13.
    J. D. Yantzi and J. T. W. Yeow, Carbon nanotube enhanced pulse electric field electroporation for biomedical applications, Proceeding of the IEEE International Conference on Mechatronics & Automation, Niagara Falls, Canada, July 2005.Google Scholar
  14. 14.
    N. A. Kouklin, W. E. Kim, A. D. Lazareck, and J. M. Xu, Carbon nanotube probes for single-cell experimentation and assays, Appl. Phys. Lett. 87, 173901–173901–3 (2005).CrossRefADSGoogle Scholar
  15. 15.
    M. A. Correa-Duarte, N. Wagner, J. A. Rojas-Chapana, C. Morsczeck, M. Thie, and M. Giersig, Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth, Nano Lett. 4(11), 2233–2236 (2004).CrossRefADSGoogle Scholar
  16. 16.
    S. Giannona, I. Firkowska, J. A. Rojas-Chapana, and M. Giersig, Vertically aligned carbon nanotubes as cytocompatible material for enhanced adhesion and proliferation of osteoblast-like cells, J. Nanosci. Nanotechnol. 7, 1679–1683 (2007).CrossRefGoogle Scholar
  17. 17.
    I. Firkowska, M. Olek, N. Pazos-Perez, J. A. Rojas-Chapana, and M. Giersig, Highly ordered MWNT-based matrixes: topography at the nanoscale conceived for tissue engineering, Langmuir 22(12), 5427–5434 (2006).CrossRefGoogle Scholar
  18. 18.
    E. A. Cavalcanti-Adam, T. Volberg, A. Micoulet, H. Kessler, B. Geiger, and J. P. Spatz, Cell Spreading and focal adhesion dynamics are regulated by spacing of integrin ligands, Biophys. J. 92(8), 2964–29 (2007).CrossRefADSGoogle Scholar
  19. 19.
    B. S. Harrison and A. Atala, Carbon nanotube applications for tissue engineering, Biomaterials 28(2), 344–53 (2007).CrossRefGoogle Scholar
  20. 20.
    X. Shi, J. L. Hudson, P. P. Spicer, J. M. Tour, R. Krishnamoorti, and A. G. Mikos, Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering, Biomacromolecules 7(7), 2237–2242 (2006).CrossRefGoogle Scholar
  21. 21.
    T. J. Webster and E. S. Ahn, Nanostructured biomaterials for tissue engineering bone, Adv. Biochem. Eng. Biotechnol. 103, 275–308 (2007).Google Scholar
  22. 22.
    L. P. Zanello, B. Zhao, H. Hu, and R. C. Haddon, Bone cell proliferation on carbon nanotubes, Nano Lett. 6(3), 562–567 (2006).CrossRefADSGoogle Scholar
  23. 23.
    B. Nguyen-Vu, H. Chen, A. M. Cassell, R. Andrews, M. Meyyappan, and J. Li, Vertically aligned carbon nanofiber arrays: an advance toward electrical-neural interfaces, Small 2(1), 89–94 (2006).CrossRefGoogle Scholar
  24. 24.
    V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, and L. Ballerini, Carbon nanotube substrates boost neuronal electrical signalling, Nano Lett. 5(6), 1107–1110 (2005).CrossRefADSGoogle Scholar
  25. 25.
    T. J. Webster, Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants, Nanotechnology 15, 48–54 (2004).CrossRefADSGoogle Scholar
  26. 26.
    M. P. Mattson, R. C. Haddon, and A. M. Rao, Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth, Mol. Neurosci. 14(3), 175–182 (2000).CrossRefGoogle Scholar
  27. 27.
    T. C. Pappas, W. M. S. Wickramanyake, E. Jan, M. Motamedi, M. Brodwick, and N. A. Kotov, Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons, Nano Lett. 7(2), 513–519 (2007).CrossRefADSGoogle Scholar
  28. 28.
    F. Patolsky, B. P. Timko, G. Yu, Y. Fang, A. B. Greytak, G. Zheng, and C. B. Lieber, Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor array, Science 313, 110–1104 (2006).CrossRefGoogle Scholar
  29. 29.
    G. A. Silva, Nanotechnology approaches for the regeneration and neuroprotection of the central nervous system, Surg. Neurol. 63, 301–306 (2005).CrossRefGoogle Scholar
  30. 30.
    M. K. Gheith, T. C. Pappas, A. V. Liopo, V. A. Sinani, B. S. Shim, M. Motamedi, J. P. Wicksted, and N. A. Kotov, Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes, Adv. Mater. 18(22), 2975–2979 (2006).CrossRefGoogle Scholar
  31. 31.
    M. K. Gheith, V. A. Sinani, J. P. Wicksted, R. L. Matts, and N. A. Kotov, Single-walled carbon nanotube polyelectrolyte multilayers and freestanding films as a biocompatible platform for neuroprosthetic implants, Adv. Mater. 17(22), 2663–2670 (2005).CrossRefGoogle Scholar
  32. 32.
    K. A. Willets and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem. 58, 267–297 (2007).CrossRefGoogle Scholar
  33. 33.
    A. J. Haes and R. P. Van Duyne, A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, J. Am. Chem. Soc. 124(35), 10596–10604 (2002).CrossRefGoogle Scholar
  34. 34.
    S. Kanno, Y. Yanagida, T. Haruyama, E. Kobatake, and M. Aizawa, Assembling of engineered IgG-binding protein on gold surface for highly oriented antibody immobilization, J Biotechnol. 76, 207–214 (2000).CrossRefGoogle Scholar
  35. 35.
    D. Shenoy, W. Fu, J. Li, C. Crasto, G. Jones, C. Dimarzio, S. Sridhar, and M. Amiji, Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery, Int. J. Nanomed. 1(1), 51–58 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Izabela Firkowska
    • 1
  • Suna Giannona
    • 1
  • José A. Rojas-Chapana
    • 1
  • Klaus Luecke
    • 2
  • Oliver Brüstle
    • 3
  • Michael Giersig
    • 1
  1. 1.Center of advanced european studies and research (caesar)Nanoparticle Technology DepartmentBonnGermany
  2. 2.GILUPI Nanomedicine GmbHGolmGermany
  3. 3.Institute of Reconstructive Neurobiology, Life and Brain CenterUniversity of BonnBonnGermany

Personalised recommendations