Fatigue as a Phenomenon in the Material

In a specimen subjected to a cyclic load, a fatigue crack nucleus can be initiated on a microscopically small scale, followed by crack grows to a macroscopic size, and finally to specimen failure in the last cycle of the fatigue life. In the present chapter the fatigue phenomenon will be discussed as a mechanism occurring in metallic materials, first on a microscale and later on a macroscale.

Understanding of the fatigue mechanism is essential for considering various technical conditions which affect fatigue life and fatigue crack growth, such as the material surface quality, residual stress, and environmental influence. This knowledge is essential for the analysis of fatigue properties of an engineering structure. Fatigue prediction methods can only be evaluated if fatigue is understood as a crack initiation process followed by a crack growth period. For that reason, the present chapter is a prerequisite for most chapters of this book.


Fatigue Crack Fatigue Life Crack Initiation Crack Growth Rate Fatigue Crack Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ewing, J.A. and Humfrey, J.C.W., The fracture of metals under repeated alternations of stress. Phil. Trans. Roy. Soc., Vol. A200 (1903), pp. 241–250.Google Scholar
  2. 2.
    Bullen, W.P., Head, A.K. and Wood, W.A., Structural changes during the fatigue of metals. Proc. Roy. Soc., Vol. A216 (1953), p. 332.Google Scholar
  3. 3.
    Forsyth, P.J.E., The Physical Basis of Metal Fatigue. Blackie and Son, London (1969).Google Scholar
  4. 4.
    Blom, A.E., Hedlund, A., Zhao, W., Fathalla, A., Weiss, B. and Stickler, R., Short fatigue crack growth in Al 2024 and Al 7475. Behaviour of Short Fatigue Cracks, Symp., September 1985, Sheffield. EGF 1, MEP (1986), pp. 37–66.Google Scholar
  5. 5.
    Cummings, H.N., Stulen, F.B. and Schulte, W.C., Tentative fatigue strength reduction factors for silicate-type inclusions in high-strength steels. Proc. ASTM, Vol. 58 (1958) pp. 505–514.Google Scholar
  6. 6.
    Murakami, Y., Takada, M. and Toriyama, T., Super-long life tension-compression fatigue properties of quenched and tempered 0.46% carbon steel. Int. J. Fatigue, Vol. 20 (1998), pp. 661–667.CrossRefGoogle Scholar
  7. 7.
    Kung, C.Y. and Fine, M.E., Fatigue crack initiation and microcrack growth in 2024T4 and 2124-T4 aluminum alloys. Metall. Trans. A, Vol. 10A (1979), pp. 603–610.Google Scholar
  8. 8.
    Schijve, J., The practical and theoretical significance of small cracks. An evaluation. Fatigue 84. Proc. Int. Conf. on Fatigue Thresholds, Birmingham. EMAS (1984), pp. 751–771.Google Scholar
  9. 9.
    Forrest, P.G., Fatigue of Metals. Pergamon Press, Oxford (1962).Google Scholar
  10. 10.
    Ransom, J.T., The effect of inclusions on the fatigue strength of SAE 4340 steels. Trans. Am. Soc. Metals, Vol. 46 (1954), pp. 1254–1269.Google Scholar
  11. 11.
    Frost, N.E. and Phillips, C.E., Studies in the formation and propagation of cracks in fatigue specimens. Proc. Int. Conference on Fatigue of Metals, London, September 1956. The Institution of Mechanical Engineers (1956), pp. 520–526.Google Scholar
  12. 12.
    Frost, N.E., Marsh, K.J. and Pook, L.P., Metal Fatigue. Clarendon, Oxford (1974).Google Scholar
  13. 13.
    Kung, C.Y. and Fine, M.E., Fatigue crack initiation and microcrack growth in 2024T4 and 2124-T4 aluminum alloys. Metall. Trans. A, Vol. 10A (1979), pp. 603–609.Google Scholar
  14. 14.
    Sigler, D., Montpetit, M.C. and Haworth, W.L., Metallography of fatigue crack initiation in an overaged highstrength aluminium alloy. Metall. Trans. A, Vol. 14A (1983), pp. 931–938.Google Scholar
  15. 15.
    Schijve, J., Fatigue predictions and scatter. Fatigue Fract. Engng. Mater. Struct., Vol. 17 (1994), pp. 381–396.CrossRefGoogle Scholar
  16. 16.
    de Forest, A.V., The rate of growth of fatigue cracks. J. Appl. Mech., Vol. 3 (March 1936), pp. A-23 to A-25.Google Scholar
  17. 17.
    Zappfe, C.A. and Worden, C.O., Fractographic registrations of fatigue. Trans. Am. Soc. Metals, Vol. 43 (1951), pp. 958–969.Google Scholar
  18. 18.
    Forsyth, P.J.E. and Ryder, D.A., Some results of the examination of aluminium alloy specimen fracture surfaces,. Metallurgia, Vol. 63 (1961), pp. 117–124.Google Scholar
  19. 19.
    McMillan, J.C. and Pelloux, R.M.N., Fatigue crack propagation under program and random loading. Fatigue Crack Propagation, ASTM STP 415 (1967), pp. 505–535.Google Scholar
  20. 20.
    Laird, C., The influence of metallurgical structure on the mechanisms of fatigue crack propagation. Fatigue Crack Propagation, ASTM STP 415 (1967), pp. 131–180.Google Scholar
  21. 21.
    Bowles, C.Q. and Schijve, J., Crack tip geometry for fatigue cracks grown in air and vacuum. Advances in Quantitative Measurement of Physical Damage. ASTM STP 811 (1983), pp. 400–426.Google Scholar
  22. 22.
    Scheerder, C., The danger of single corrosion pits with respect to fatigue. Master Thesis, Faculty of Aerospace Engineering, Delft University of Technology (1992).Google Scholar
  23. 23.
    Zhou, S. and Turnbull, A., Influence of pitting on the fatigue life of a turbine blade steel. Fatigue Fract. Engng. Mater. Struct., Vol. 22 (1999), pp. 1083–1093.CrossRefGoogle Scholar
  24. 24.
    Endo, K. and Miyao, Y., Effects of cycle frequency on the corrosion fatigue strength. Bull. Japan Soc. Mech. Engrs., Vol. 1 (1958), pp. 374–380.Google Scholar
  25. 25.
    Barsom, J.M., Effect of cyclic stress form on corrosion fatigue crack propagation below KIscc in a high yield strength steel. Corrosion Fatigue: Chemistry, mechanics and Microstructure, O.F. Devereux, A.J. McEvily and R.W. Staehle (Eds.), Vol. NACE-2. National Association of Corrosion Engineers, Houston (1972), pp. 424–436.Google Scholar
  26. 26.
    Broek, D., Accident investigation. Report of the National Aerospace Laboratory NLR, Amsterdam.Google Scholar
  27. 27.
    Schijve, J., Fatigue crack propagation in light alloys. National Aerospace Laboratory NLR, Amsterdam, Report M.2010 (1956).Google Scholar

Some general references

  1. 28.
    Murakami, Y., Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions. Elsevier (2002).Google Scholar
  2. 29.
    Suresh, S., Fatigue of Materials, 2nd edn. Cambridge University Press, Cambridge (1998).Google Scholar
  3. 30.
    Miller, K.J., The three thresholds for fatigue crack propagation. ASTM STP 1296, R.S. Piascik, J.C. Newman, and N.E. Dowling (Eds.). ASTM (1997), pp. 267–286.Google Scholar
  4. 31.
    Fatigue and Fracture. American Society for Materials, Handbook Vol. 19, ASM International (1996).Google Scholar
  5. 32.
    Carpinteri, A., Handbook of Fatigue Cracking — Propagation in Metallic Structures. Elsevier, Amsterdam (1994).Google Scholar
  6. 33.
    Fractography. American Society for Materials, Handbook Vol. 12. ASM International (1987).Google Scholar
  7. 34.
    Ritchie, R.O. and Lankford, J. (Eds.), Small Fatigue Cracks. Proc. 2nd Engineering Foundation Int. Conf., 1986. The Metallurgical Society (1986).Google Scholar
  8. 35.
    Miller, K.J. and de los Rios, E.R. (Eds.), The Behaviour of Short Fatigue Cracks. EGF Publication 1, Mechanical Engineering Publications, London (1986).Google Scholar
  9. 36.
    Fuchs, H.O. and Stephens, R.I., Metal Fatigue in Engineering. John Wiley & Sons (1980).Google Scholar
  10. 37.
    Klesnil, M. and Lukás, P., Fatigue of Metallic Materials, 2nd edn. Elsevier, Amsterdam (1992).Google Scholar
  11. 38.
    Fong, J.T. (Ed.), Fatigue Mechanisms. ASTM STP 675 (1979).Google Scholar
  12. 39.
    Kocanda, S. Fatigue Failure of Metals. Sijthoff & Noordhoff (1978).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Personalised recommendations