Skip to main content

Connecting Ring Ultrastructure in the Jurassic Ammonoid Quenstedtoceras with Discussion on Mode of Life of Ammonoids

  • Chapter
Book cover Cephalopods Present and Past: New Insights and Fresh Perspectives

It was generally assumed (e.g., Mutvei, 1967, 1975; Grégoire, 1984; Westermann, 1971, 1982, 1993, 1996; Bandel, 1981; Obata et al., 1980; Tanabe, 1977, 1979; Hewitt et al., 1993; Kulicki, 1994; Hewitt, 1996) that the connecting ring in prosiphonate ammonoids, in which the septal necks are directed adorally, had similar structure and composition as that in the retrosiphonate Recent Nautilus, in which the septal necks are directed adapically, and in which the bathymetry is well known. Based on this assumption, Westermann (1971) calculated the mechanical strength of the ammonoid siphuncle against hydrostatic pressure (siphuncular strength index) from the siphuncular wall thickness, multiplied by 100 and divided by the siphuncle inner radius. This index was thought to indicate the maximum water depth where ammonoid shell imploded and, hence, the maximum habitat depth of the animal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bandel, K. 1981. The structure and formation of the siphuncular tube of Quenstedtoceras compared with that of Nautilus. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 161: 153–171.

    Google Scholar 

  • Chamberlain, J. A. 1993. Locomotion in ancient seas: constraint and opportunity in cephalopod adaptive design. Geobios 15: 49–61.

    Article  Google Scholar 

  • Chamberlain, J. A., P. D. Ward, and J. S. Weaver. 1981. Post-mortem ascent of nautilus shells: implications for cephalopod paleobiogeography. Paleobiology 7: 494–550.

    Google Scholar 

  • Checa, A. 1996. Origin of intracameral sheets in ammonoids. Lethaia 29: 61–75.

    Article  Google Scholar 

  • Clarke, M. R. 1969. Cephalopoda collected on the SOND cruise 1965. Journal of the Marine Biological Association of the United Kingdom 50: 961–1000.

    Article  Google Scholar 

  • Collins, D., and P. D. Ward. 1987. Adolescent growth and maturity in Nautilus. In W. B. Saunders, and N. H. Landman (editors), Nautilus, the Biology and Paleobiology of a Living Fossil, pp. 421–432. New York: Plenum Press.

    Google Scholar 

  • Compére, P., and G. Goffinet. 1987. Ultrastructural shape and three dimensional organization of the intracuticular canal system in the mineralized cuticle of the green crab Carcinus maenas. Tissue and Cell 19: 839–858.

    Article  Google Scholar 

  • Crick, G. C. 1898. On the muscular attachment of the animal to its shell in some Cephalopoda (Ammonoidea). Transactions of the Linnean Society of London, Zoology 7: 71–113.

    Article  Google Scholar 

  • Dagys, A. S., and W. Weitschat. 1993a. Intraspecific variation in Boreal Triassic ammonoids. Geobios 15: 107–109.

    Article  Google Scholar 

  • Dagys, A. S., and W. Weitschat. 1993b. Extensive intraspecific variation in a Triassic ammonoid from Siberia. Lethaia 26: 113–121.

    Article  Google Scholar 

  • Dalingwater, J. E., and H. Mutvei. 1990. Arthropod exoskeletons. In J. G. Carter (editor), Skeletal Biomineralization. Patterns, Processes and Evolutionary Trends. Volume I, pp. 83–96. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Davis, R. A., N. H. Landman, J. L. Dommergues, D. Marchand, and H. Bucher. 1996. Mature modifications and dimorphism in ammonoid cephalopods. In N. H. Landman, K. Tanabe, and R. A. Davis (editors), Ammonoid paleobiology, pp. 463–539. New York: Plenum Press.

    Google Scholar 

  • Dennell, R. 1960. Integument and exoskeleton. In T. H. Waterman (editor), The Physiology of Crustacea. Volume I, pp. 449–472. New YorK: Academic Press.

    Google Scholar 

  • Denton, E. J., J. B. Gilpin-Brown, and J. V. Howarth. 1967. On the buoyancy of Spirula spirula. Association of the United Kingdom 47: 181–191.

    Article  Google Scholar 

  • Denton, E. J., and J. B. Gilpin-Brown. 1971. Further observations on the buoyancy of Spirula. Journal of the Marine Biological Association of the United Kingdom 51: 363–373.

    Article  Google Scholar 

  • Doguzhaeva, L. A., and Mutvei, H. 1991. Organization of the soft body in Aconeceras (Ammonitina), interpreted on the basis of shell morphology and muscle scars. Palaeontographica A. 218: 17–33.

    Google Scholar 

  • Doguzhaeva, L. A., and H. Mutvei. 1996. Attachment of the body to the shell in ammonoids. In N. H. Landman, K. Tanabe, and R. A. Davis (editors), Ammonoid Paleobiology, pp. 43–63. New York: Plenum Press.

    Google Scholar 

  • Doguzhaeva, L. A., and H. Mutvei. 2003. Gladius composition and ultrastructure in extinct squid-like coleoids: Loligosepia, Trachyteuthis and Teudopsis. Revue de Paléobiologie 22: 877–894.

    Google Scholar 

  • Donovan, D. T. 1993. Ammonites in 1991. In M. R. House (editor), The Ammonoidea: Environment, Ecology, and Evolutionary Change, pp. 85–97. Oxford: Clarendon Press.

    Google Scholar 

  • Florkin, M. 1960. Blood chemistry. In T. H. Waterman (editor), The Physiology of Crustacea. Volume I, pp. 141–160. New York: Academic Press.

    Google Scholar 

  • Grégoire, C. 1984. Remains of organic components in the siphonal tube and in the brown membrane of ammonoids and fossil nautiloids. Akademie der Wissenschaften und der Litteratur, Abhhandlungen der matematisch-naturwissenschaftlichen Klasse, Mainz 1984: 4–56.

    Google Scholar 

  • Heptonstall, W. B. 1970. Buoyancy control in ammonoids. Lethaia 3: 317–328.

    Article  Google Scholar 

  • Hewitt, R. A. 1996. Architecture and strength of the ammonoid shell. In N. H. Landman, K. Tanabe, and R. A. Davis (editors), Ammonoid Paleobiology, pp. 297–339. New York: Plenum Press.

    Google Scholar 

  • Hewitt, R. A., U. A. Abdelsalam, M. A. Dokainish, and G. E. G. Westermann. 1993. Comparision of the relative strength of siphuncles with prochoanitic and retrochoanitic septal necks by finite-element analysis. In M. R. House (editor), The Ammonoidea: Environment, Ecology, and Evolutionary Change, pp. 85–97. Oxford: Clarendon Press.

    Google Scholar 

  • Jacobs, D. K. 1992. Shape, drag, and power in ammonoid swimming. Paleobiology 18: 203–220.

    Google Scholar 

  • Jacobs, D. K., and N. H. Landman. 1993. Nautilus–a poor model for the function and behavior of ammonoids? Lethaia 26: 101–111.

    Article  Google Scholar 

  • Jordan, R. 1968. Zur Anatomie mesozoischen Ammoniten nach den Strukturelementen der Gehäuse-Innerwand. Beihefte des Geologischen Jahrbuch 77: 1–64.

    Google Scholar 

  • Kennedy, W. J., W. A. Cobban, and H. C. Klinger. 2002. Muscle attachment and mantle related features in Upper Cretaceous Baculites from the United States Western interior. Abhandlungen der Geologischen Bundesanstalt 57: 89–112.

    Google Scholar 

  • Klug, C., and D. Korn. 2004. The origin of ammonoid locomotion. Acta Palaeontologica Polonica 49: 235–242.

    Google Scholar 

  • Kröger, B. 2002. On the efficiency of the buoyancy apparatus in ammonoids: evidences from sublethal shell injuries. Lethaia 35: 61–70.

    Article  Google Scholar 

  • Kulicki, C. 1979. The ammonite shell: its structure, development and biological significance. Acta Palaeontologica Polonica 39: 97–142.

    Google Scholar 

  • Kulicki, C. 1994. Septal neck-siphuncular complex in Stolleyites (Ammonoidea), Triassic, Svalbard. Polish Polar Research 15: 37–49.

    Google Scholar 

  • Kulicki, C., and H. Mutvei. 1988. Functional interpretation of ammonoid septa. In J. Wiedmann, and J. Kullmann (editors), Cephalopods–Present and Past, pp. 713–718. Stuttgart: Schweitzerbart’sche Verlagbuchhandlung.

    Google Scholar 

  • Maeda, H., and A. Seilacher. 1996. Ammonoid taphonomy. In N. H. Landman, K. Tanabe, and R. A. Davis (editors), Ammonoid Paleobiology, pp. 544–578. New York: Plenum Press.

    Google Scholar 

  • Makowski, H. 1962. Problem of sexual dimrphism in ammonites. Palaeontologia Polonica 12: 1–92.

    Google Scholar 

  • Mapes, R. H., K. Tanabe, and N. H. Landman. 1999. Siphuncular membranes in Upper Paleozoic prolecanitid ammonoids from Nevada, USA. In K. Histon (editor), V International Symposium Cephalopods–Present and Past, Vienna 6–7 September 1999. Berichte der Geologischen Bundesanstalt. Abstracts Volume, 46: 83.

    Google Scholar 

  • Mutvei, H. 1967. On the microscopic shell structure in some Jurassic ammonoids. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 129: 157–166.

    Google Scholar 

  • Mutvei, H. 1972. Ultrastrucural studies on cephalopod shells, Part I. The septa and siphonal tube in Nautilus. Bulletin of the Geological Institutions of the University of Uppsala. New Series 3: 237–261.

    Google Scholar 

  • Mutvei, H. 1975. The mode of life in ammonoids. Paläontologische Zeitschrift 49: 196–202.

    Google Scholar 

  • Mutvei, H. 1997. Characterization of actinoceratoid cephalopods by their siphuncular structure. Lethaia 29: 339–348.

    Article  Google Scholar 

  • Mutvei, H. 1998. Siphuncular structure in a Silurian narthecoceratid nautiloid cephalopod from the Island of Gotland. Geologiska Föreningens i Stockholm Förhandlingar 120: 375–378.

    Google Scholar 

  • Mutvei, H. 2002a. Nautiloid systematics based on siphuncular structure and position of muscle scars. Abhandlungen der Geologischen Bundesanstalt 57: 379–392.

    Google Scholar 

  • Mutvei, H. 2002b. Connecting ring structure and its significance for classification of the orthoceratid cephalopods. Acta Palaeontologica Polonica 47: 157–168.

    Google Scholar 

  • Mutvei, H., and D. D. Donovan. 2006. Siphuncular structure in some fossil coleoids and Recent Spirula. Palaeontology (in press).

    Google Scholar 

  • Mutvei, H., and R. A. Reyment. 1973. Buoyancy control and siphuncle function in ammonoids. Palaeontology 16: 623–636.

    Google Scholar 

  • Mutvei, H., W. Weitschat, L. A. Doguzhaeva, and E. Dunca. 2004. Connecting ring with pore canals in two genera of Mesozoic ammonoids. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg 88:135–144.

    Google Scholar 

  • Obata, I., K. Tanabe, and Y. Fukuda. 1980. The ammonite siphuncular wall: its microstructure and functional significance. Bulletin of the National Science Museum Tokyo. Series C 6: 59–72.

    Google Scholar 

  • Passano, L. M. 1960. Molting and its control. In. T. H. Waterman (editor), The Physiology of Crustacea. Volume I, pp. 473–536. New York: Academic Press.

    Google Scholar 

  • Richter, U., and R. Fischer. 2002. Soft tissue attachment structures on pyritized internal molds of ammonites. Abhandlungen der Geologischen Bundesanstalt 57: 139–149.

    Google Scholar 

  • Sarti, C. 1999. Whorl width in the body chamber of ammonites as a sign of dimorphism. In F. Oloriz, and J. Rodriguez-Towar (editors), Advancing Research on Living and Fossil Cephalopods, pp. 315–332. New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Saunders, W. B., and P. D. Ward. 1987. Ecology, distribution and population characteristics of Nautilus. In W. B. Saunders, and N. H. Landman (editors), Nautilus, the Biology and Paleobiology of a Living Fossil, pp. 137–162. New York: Plenum Press.

    Google Scholar 

  • Saunders, W. B., and P. D. Ward. 1994. Nautilus is not a model for the function and behavior of ammonoids. Lethaia 27: 47–48.

    Article  Google Scholar 

  • Seki, K., K. Tanabe, N. H. Landman, and D. K. Jacobs. 2000. Hydrodynamic analysis of Late Cretaceous desmoceratine ammonites. Revue de Paléobiologie. Volume Spécial 8: 141–155.

    Google Scholar 

  • Tanabe, K. 1977. Functional evolution of Otoscaphites puerculus (Jimbo) and Scaphites planus (Yabe), Upper Cretaceous ammonites. Memoirs of the Faculty of Science, Kyushu University. Series D, Geology 23: 367–407.

    Google Scholar 

  • Tanabe, K. 1979. Palaeoecological analysis of ammonoid assemblages in the Turonian Scaphites facies of Hokkaido, Japan. Palaeontology 22: 609–630.

    Google Scholar 

  • Tanabe, K., Y. Fukuda, and I. Obata. 1982. Formation and function of the siphuncle-septal neck structures in two Mesozoic ammonites. Transactions and Proceedings of the Palaeontological Society of Japan 128: 433–443.

    Google Scholar 

  • Tanabe, K., and N. H. Landman. 1996. Septal neck-siphuncular complex of ammonoids. In N. H. Landman, K. Tanabe, and R. A. Davis (editors), Ammonoid Paleobiology, pp. 129–165. New York: Plenum Press.

    Google Scholar 

  • Ward, P. D. 1987. The Natural History of Nautilus. Boston, MA: Allen & Unwin.

    Google Scholar 

  • Weitschat, W. 1986. Phosphatisierte Ammonoideen aus der Mittleren Trias von Central-Spitzbergen. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg 61: 249–279.

    Google Scholar 

  • Weitschat, W., and K. Bandel. 1991. Organic components in phragmocones of Boreal Triassic ammonoids: implications for ammonoid biology. Paläontologische Zeitschrift 65: 269–303.

    Google Scholar 

  • Westermann, G. E. G. 1971. Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids. Life Science Contributions of the Royal Ontario Museum 78: 1–39.

    Google Scholar 

  • Westermann, G. E. G. 1975. Model for origin, function and fabrication of fluted cephalopod septa. Paläontologische Zeitschrift 49: 235–253.

    Google Scholar 

  • Westermann, G. E. G. 1982. The connecting rings in Nautilus and Mesozoic ammonoids: implications for ammonoid bathymetry. Lethaia 15: 373–384.

    Article  Google Scholar 

  • Westermann, G. E. G. 1987. New developments in ecology of Jurassic-Cretaceous ammonoids. Atti del secondo convegno internazionale Fossili, Evoluzione, Ambiante. Pergola 25–30 ottobre 1987, pp. 459–478.

    Google Scholar 

  • Westermann, G. E. G. 1993. Hydrostatics and hydrodynamics of cephalopod shells: form, structure, and function. Anales Academia Nacional de Ciencias Exactas, Fisicas y Naturales de Buenos Aires 45: 183–204.

    Google Scholar 

  • Westermann, G. E. G. 1996. Ammonoid life and habitat. In N. H. Landman, K. Tanabe, and R. A. Davis (editors), Ammonoid Paleobiology, pp. 607–707. New York: Plenum Press.

    Google Scholar 

  • N. H. Landman et al. (eds.), Cephalopods Present and Past: New Insights and Fresh Perspectives, 239–256.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Mutvei, H., Dunca, E. (2007). Connecting Ring Ultrastructure in the Jurassic Ammonoid Quenstedtoceras with Discussion on Mode of Life of Ammonoids. In: Landman, N.H., Davis, R.A., Mapes, R.H. (eds) Cephalopods Present and Past: New Insights and Fresh Perspectives. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6806-5_12

Download citation

Publish with us

Policies and ethics