Advertisement

Development of New Supported Reagents for the Synthesis of Biologically Active Molecules

  • Antonio Solinas
  • Maurizio Taddei
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 246)

As a consequence of the changes associated with the need for preparing arrays of compound for hit discovery in pharmaceutical and fine chemical research laboratories, the research of new technologies that allow for the automation of synthetic processes has been developed. Since the pioneering work by Merrifield, polymeric supports have played a key role in this field. Polymer assisted solution-phase synthesis, which utilizes immobilized reagents and catalysts has more recently entered in the organic chemistry laboratories. It has various advantages over conventional solution- phase chemistry, such as the ease of separation of the supported species from a reaction mixture by filtration and washing and the opportunity to use an excess of the reagent to force the reaction to completion. On the other hand, as the reactions are performed in solution, the analytical techniques are the same of conventional synthesis. Various strategies for employing functionalized polymers stoichiometrically have been developed and this chapter reports some selected examples of use of reagents covalently attached to the polymeric backbone. This selection is intended to attract synthetic chemists to use this technique highlighting the use of the methodology to solve synthetic problems and pointing out which reagents and scavengers may have potential applications in sustainable and more secure chemical processes.

Keywords

combinatorial chemistry polymer-supported reagents scavengers catch and release library organic synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. B. Merrifield, Solid phase peptide synthesis. I. The synthesis of a tetrapeptide, J. Am. Chem. Soc. 85, 2149 (1963).CrossRefGoogle Scholar
  2. 2.
    (a) H. Hodge, Synthesis of organic compounds using polymer-supported reagents, catalysts, and/or scavengers in benchtop flow systems, Ind. Eng. Chem. Res. 44, 8542 (2005). (b) I. R. Baxendale, S. V. Ley, Synthesis of alkaloid natural products using solid-supported reagents and scavengers, Curr. Org. Chem. 9, 1521 (2005). (c) A. M. Harned, P. R. Hanson, and D. L. Flynn Natural product synthesis utilizing solid-supported reagents, Chemtracts 15, 630 (2002). (d) S. V. Ley, I. R. Baxendale, G. Brusotti, M. Caldarelli, A. Massi, and M. Nesi, Solid-supported reagents for multi-step organic synthesis: Preparation and application, Farmaco 57, 321 (2002). (e) A. Kirschning, H. Monenschein, and R. Wittenberg Functionalized polymers – emerging versatile tools for solution-phase chemistry and automated parallel synthesis, Angew. Chem. Int. Ed. Engl 40, 650 (2001). (f) S. V. Ley, I. R. Baxendale, R. N. Bream, P. S. Jackson, A. G. Leach, D. A. Longbottom, M. Nesi, J. S. Scott, R. I. Storter, and S. J. Taylor, Multi-step organic synthesis using solid-supported reagents and scavengers: a new paradigm in chemical library generation, J. Chem. Soc. Perkin 1 381 (2000). (g) J. J. Parlow, R. V. Devrajt, and M. S. South, Solution phase chemical library synthesis using polymer assisted purification techniques, Curr. Opin. Chem. Biol. 3, 320 (1999).Google Scholar
  3. 3.
    A. Cheminat, C. Benezra, M. J. Ferrall, and J. Frechet Use of polymeric nucleophiles for the selective binding and removal of α-methylene-γ-butyrolactone allergens from complex mixtures, Tetrahedron Lett. 21, 617 (1980).CrossRefGoogle Scholar
  4. 4.
    S. W. Kaldor, M. G. Siegel, J. E. Fritz, B. A. Dressman, and P. J. Hahn, Use of solid supported nucleophiles and electrophiles for the purification of non-peptide small molecule libraries, Tetrahedron Lett. 37, 7193 (1996).CrossRefGoogle Scholar
  5. 5.
    R. J. Booth and J. C. Hodges, Polymer-supported quenching reagents for parallel purification, J. Am. Chem. Soc. 119, 4882 (1997).CrossRefGoogle Scholar
  6. 6.
    J. March and M. B. Smith, March’s Advanced Organic Chemistry: Reactions, Mechanisms and Structure (Wiley, New York, 1999).Google Scholar
  7. 7.
    A. Falchi and M. Taddei, PEG-dichlorotriazine (PEG-DCT): a new soluble polymer-supported scavenger for alcohols, thiols, phosphines, and phosphine oxides, Org. Lett. 2, 3429 (2000).CrossRefGoogle Scholar
  8. 8.
    B. H. Lipshutz and P. A. Blomgren, Efficient scavenging of Ph3P and Ph3P=O with high-loading Merrifield resin, Org. Lett. 3, 1869 (2001).CrossRefGoogle Scholar
  9. 9.
    D. H. Sherrington, Polymer-supported reagents, catalysts, and sorbents: evolution and exploitation. A personalized view, J. Polym. Sci. A. Pol. Chem. 39, 2364 (2001).CrossRefGoogle Scholar
  10. 10.
    P. Hodge and D. C. Sherrington (eds.), Polymer-supported Reactions in Organic Synthesis (Wiley, Chichester, 1980).Google Scholar
  11. 11.
    F. Gaggini, A. Porcheddu, G. Reginato, M. Rodriquez, and M. Taddei, Colorimetric tools for solid-phase organic synthesis, J. Comb. Chem. 6, 805 (2004).CrossRefGoogle Scholar
  12. 12.
    S. D. Brown and R. W. Armstrong, Parallel synthesis of tamoxifen and derivatives on solid support via resin capture, J. Org. Chem. 62, 7076 (1997).CrossRefGoogle Scholar
  13. 13.
    (a) S. Masala and M. Taddei, Solid-supported chloro[1, 3, 5]triazine. A versatile new synthetic auxiliary for the synthesis of amide libraries, Org. Lett 1, 1355 (1999). (b) E. Petricci, C. Mugnaini, M. Radi, F. Corelli, and M. Botta, Microwave-assisted acylation of amines, alcohols, and phenols by the use of solid-supported reagents (SSRs), J. Org. Chem. 69, 7880 (2004).Google Scholar
  14. 14.
    H. Sumiyoshi, T. Shimizu, M. Katoh, Y. Baba, and M. Sodeoka, Solution-phase parallel synthesis of carbamates using polymer-bound N-hydroxysuccinimide, Org. Lett. 4, 3923 (2002).CrossRefGoogle Scholar
  15. 15.
    Y. Hu, S. Baudart, and J. A. Porco Jr, Parallel synthesis of 1, 2, 3-thiadiazoles employing a “catch and release” strategy, J. Org. Chem. 64, 1049 (1999).CrossRefGoogle Scholar
  16. 16.
    G. Giacomelli, A. Porcheddu, M. Salaris, and M. Taddei, Microwaves-assisted solution synthesis of 1, 4, 5-trisubstituted pyrazoles, Eur. J. Org. Chem. 537 (2003).Google Scholar
  17. 17.
    L. De Luca, G. Giacomelli, A. Porcheddu, M. Salaris, and M. Taddei, Cellulose beads: a new versatile solid support for microwave-assisted synthesis. Preparation of pyrazole and isoxazole libraries, J. Comb. Chem. 5, 465 (2003).CrossRefGoogle Scholar
  18. 18.
    A. Porcheddu, G. Giacomelli, L. De Luca, and A. M. Ruda, A “catch and release” strategy for the parallel synthesis of 2, 4, 5-trisubstituted pyrimidines, J. Comb. Chem. 6, 105 (2004).CrossRefGoogle Scholar
  19. 19.
    A. Porcheddu, G. Giacomelli, A. Chighine, and S. Masala, New cellulose-supported reagents: a sustainable approach to guanidines, Org. Lett 6, 4925 (2004).CrossRefGoogle Scholar
  20. 20.
    M. J. Astle, Ion Exchangers in Organic and Biochemistry, C. Calman and T. R. E. Kressman (eds.) (Interscience, New York, 1957).Google Scholar
  21. 21.
    F. Camps, J. Castelles, G. Font, and F. Vela, Organic syntheses with functionalized polymers: I. Preparation of polymeric substrates and alkylation of esters, Tetrahedron Lett. 1715 (1971).Google Scholar
  22. 22.
    Heitz, W. and Michels, R., Polymeric Wittig reagents, Angew. Chem. Int. Ed. Engl. 11, 298 (1972).CrossRefGoogle Scholar
  23. 23.
    (a) P. Hodge and G. Richardson, Conversion of acids into acid chlorides and alcohols into alkyl chlorides using a polymer-supported phosphine in carbon tetrachloride, J. Chem. Soc. Chem. Commun. 622 (1975).Google Scholar
  24. 24.
    C. R. Harrison, P. Hodge, and W. J. Rodgers, Conversion of carboxamides and oximes to nitriles or imidoyl chlorides using a polymer-supported phosphine and carbon tetrachloride, Synthesis 41 (1977).Google Scholar
  25. 25.
    A. Wells, A simple preparation of acyl chlorides using polymer-supported phosphine/CCl4, Synth. Commun. 24, 1715 (1994).CrossRefGoogle Scholar
  26. 26.
    R. Caputo, E. Cassano, L. Longobardo, D. Mastroianni, and G. Palumbo, Polymer-bound triarylphosphine-iodine complexes, convenient coupling reagent systems in peptide synthesis, Synthesis 141 (1995).Google Scholar
  27. 27.
    (a) M. Bernhard, W. T. Ford, and E. C. Nelson, Syntheses of ethyl retinoate with polymer-supported Wittig reagents, J. Org. Chem. 48, 3164 (1983). (b) S. D. Clarke, C. R. Harrison, and P. Hodge, Phase transfer catalysed polymer-supported Wittig reactions, Tetrahedron Lett. 21, 1375 (1980) (c) J. Castells, J. Font, and A. Virgili, Reaction of dialdehydes with conventional and polymer-supported Wittig reagents, J. Chem. Soc. Perkin Trans 1 1 (1979). (d) M. H. Bolli and S. Ley, Development of a polymer bound Wittig reaction and use in multi-step organic synthesis for the overall conversion of alcohols to hydroxyamines, J. Chem. Soc. Perkin Trans 1 2243 (1998).Google Scholar
  28. 28.
    G. Cainelli, M. Contento, F. Manescalchi, R. Regnoli, Polymer-supported phosphonates. Olefins from aldehydes, ketones, and dioxolans by means of polymer-supported phosphonates, J. Chem. Soc. Perkin Trans. 1 2516 (1980).Google Scholar
  29. 29.
    J. C. Pelletier and S. Kincaid, Mitsunobu reaction modifications allowing product isolation without chromatography: application to a small parallel library, Tetrahedron Lett. 41, 797 (2000).CrossRefGoogle Scholar
  30. 30.
    K. Hemming, M. J. Bevan, C. Loukou, S. D. Patel, and D. Renaudeau, A One-pot Aza-Wittig based solution and polymer supported route to amines, Synlett 1565 (2000).Google Scholar
  31. 31.
    G. M. Green, N. P. Peet, W. A. Metz, Polystyrene-supported benzenesulfonyl azide: a diazo transfer reagent that is both efficient and safe, J. Org. Chem. 66, 2509 (2001).CrossRefGoogle Scholar
  32. 32.
    Unpublished results from our laboratory.Google Scholar
  33. 33.
    T. Yioshino and H. Togo, Facile preparation of polymer-supported methyl sulfonate and its recyclable use for methylation of carboxylic acids and amines, Synlett 517 (2005).Google Scholar
  34. 34.
    S. Crosignani, P. D. White, and B. Linclau polymer-supported O-methylisourea: a new reagent for the O-methylation of carboxylic acids, Org. Lett. 4, 1035 (2002).CrossRefGoogle Scholar
  35. 35.
    S. Crosignani, J. Gonzales, and D. Swinnen, Polymer-supported Mukaiyama reagent: a useful coupling reagent for the synthesis of esters and amides, Org. Lett. 6, 4579 (2004).CrossRefGoogle Scholar
  36. 36.
    D. Donati, C. Morelli, and M. Taddei, A rapid microwave assisted esterification utilizing the Mukaiyama supported reagent, Tetrahedron Lett. 46, 2817 (2005).CrossRefGoogle Scholar
  37. 37.
    E. Convers, H. Tye, and M. Whittaker, Preparation and evaluation of a polymer-supported Mukaiyama reagent, Tetrahedron Lett. 45, 3401 (2004).CrossRefGoogle Scholar
  38. 38.
    D. Donati, C. Morelli, A. Porcheddu, and M. Taddei, A new polymer-supported reagent for the synthesis of β-lactams in solution, J. Org. Chem. 69, 9316 (2004).CrossRefGoogle Scholar
  39. 39.
    Unpublished results from our laboratory.Google Scholar
  40. 40.
    F. Cardullo, D. Donati, G. Merlo, A. Paio, M. Salaris, and M. Taddei, Deprotection of o-nitrobenzensulfonyl (nosyl) derivatives of amines mediated by a solid-supported thiol, Synlett 2996 (2005).Google Scholar
  41. 41.
    F. Cardullo, D. Donati, V. Fusillo, G. Merlo, A. Paio, M. Salaris, M. Solinas, and M. Taddei, Parallel protocol for the selective methylation and alkylation of primary amines, J. Comb. Chem. 8, 834 (2006).CrossRefGoogle Scholar
  42. 42.
    G. Banci, F. Cardullo, D. Donati, A. Mann, G. Merlo, A. Paio, A, Schoenfelder, and M. Solinas, M. Taddei, A catch and release strategy for parallel transformation of epoxides into an array of oxazolidinones (unpublished results).Google Scholar
  43. 43.
    G. Banci, A. Mann, A. Solinas, A. Schoenfelder, and M. Taddei (unpublished results).Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Antonio Solinas
    • 1
  • Maurizio Taddei
    • 1
  1. 1.Dipartimento Farmaco Chimico TecnologicoUniversità degli Studi di SienaItaly

Personalised recommendations