Skip to main content

Solventless Reactions Under Microwave Activation: Safety and Efficiency at the Service of Customer-friendly Chemistry

  • Conference paper
New Methodologies and Techniques for a Sustainable Organic Chemistry

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 246))

A range of solvent-free organic reactions performed under microwave irradiation is reported and the advantages with respect to the corresponding thermal protocols outlined. Good assets like the dramatic shortening of the reaction times, the higher efficiency, and the absence in a number of cases of toxic or polluting reagents are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. W. V. Cave, C.L. Raston, and J. L. Scott, Recent advances in solventless organic reactions: towards benign synthesis with remarkable versatility, Chem. Commun. 2159–2169 (2001).

    Google Scholar 

  2. Rajagopal, D., Narayan, R., and Swaminathan, S., Proceedings of Indian Academy of Sciences, Chemical Sciences, 2159–2169 (2001).

    Google Scholar 

  3. G. W. V. Cave and C. L. Raston, Towards benign syntheses of pyridines involving sequential solvent free aldol and Michael addition reactions, Chem. Commun. 2199–2200 (2000).

    Google Scholar 

  4. R. S. Varma and D. Kumar, Microwave-accelerated solvent-free synthesis of thioketones, thiolactones, thioamides, thionoesters, and thioflavonoids, Org. Lett. 1, 697–700 (1999).

    Article  CAS  Google Scholar 

  5. S. Paul, M. Gupta, and A. Loupy, Microwave assisted synthesis of 1, 5-disubstituted hydantoins and thiohydantoins in solvent-free conditions, Synthesis 75–78 (2002).

    Google Scholar 

  6. R. S. Varma and R. Dahiya, An expeditious and solvent-free synthesis of 2-amino-substituted isoflav-3-enes using microwave irradiation, J. Org. Chem. 63, 8038–8041 (1998).

    Article  CAS  Google Scholar 

  7. L. Blackburn and R. J. K. Taylor, In situ oxidation-imine formation-reduction routes from alchols to amines, Org. Lett. 3, 1637–1639 (2001).

    Article  CAS  Google Scholar 

  8. S. A. Raw, C. D. Wilfred, and R. J. K. Taylor, Preparation of quinoxalines, dihydropyrazines, pyrazines and piperazines, using tandem oxidation processes, Chem. Commun. 2286–2287 (2003).

    Google Scholar 

  9. S. Y. Kim, K. H. Park, and Y. K. Chung, Manganese (IV) dioxide-catalyzed synthesis of quinoxalines under microwave irradiation, Chem. Commun. 1321–1323 (2005).

    Google Scholar 

  10. A. Stadler, B. H. Yousefi, D. Dallinger, P. Walla, E. Van der Eycken, N. Kaval, and C. O. Kappe, Scalability of microwave-assisted organic synthesis. From single-mode to multimode parallel batch reactors, Org. Proc. Res Dev. 7, 707–716 (2003).

    Article  CAS  Google Scholar 

  11. J. Cleophax, M. Liagre, A. Loupy, and A. Petit, Application of focused microwaves to the scale-up of solvent-free organic reactions, Org. Proc. Res. Dev. 4, 498–504 (2000), and references therein.

    Article  CAS  Google Scholar 

  12. Green Industrial Applications of Ionic Liquids, Kluwer Academic, Dordrecht, 2003; Ionic liquids in Synthesis, 2003, Wiley-VCH Verlag, Weinheim.

    Google Scholar 

  13. M. Deetlefs and K. R. Seddon, Improved preparation of ionic liquids using microwave irradiation, Green Chemistry 5, 181–186 (2003).

    Article  CAS  Google Scholar 

  14. For a comprehensive review on this topic, see: S. Deshayes, M. Liagre, A. Loupy, J.-L. Luche, and A. Petit, Microwave activation in phase transfer catalysis, Tetrahedron 55, 10851–10870 (1999).

    Article  CAS  Google Scholar 

  15. C. Villa, M. T. Genta, A. Bargagna, E. Mariani, and A. Loupy, Microwave activation and solvent-free phase transfer catalysis for the synthesis of new benzylidene cineole derivatives as potential UV sunscreens, Green Chemistry 3, 196–200 (2001).

    Article  CAS  Google Scholar 

  16. S. Chatti, M. Bortolussi, and A. Loupy, Synthesis of diethers derived from dianhydrohexitols by phase transfer catalysis under microwave, Tetrahedron Lett. 41, 3367–3370 (2000).

    Article  CAS  Google Scholar 

  17. For an exhaustive review on the use of clay-supported reagents in organic synthesis see: Clay and clay-supported reagents in organic synthesis, R.S. Varma, Tetrahedron 58, 1235–1255 (2002).

    Google Scholar 

  18. Varma, R. S., Kumar, D., and Liesen, J.-P. Solid state synthesis of 2-aroylbenzo(b(furans, 1, 3-thiazoles and 3-aryl-5, 6-dihydroimidazo(2, 1-b(thiazoles from (α-tosyloxy-ketones using microwave irradiation, J. Chem. Res., Perkin Trans. 1 4093–4096 (1998).

    Article  Google Scholar 

  19. S. Varma, and R. Dahida, Sodium borohydride on wet clay: solvent–free reductive amination of carbonyl compounds using microwaves, Tetrahedron 54, 6293–6298 (1998).

    Article  CAS  Google Scholar 

  20. R. S. Varma, M. Varma, and A. K. Chatterjee, Microwave-assisted deacetylation on alumina: a simple deprotection method, Perkin Trans. 1999–1001 (1993).

    Google Scholar 

  21. R. S. Varma, A. K. Chatterjee, and M. Varma, Alumina-mediated microwave thermolysis: a new approach to deprotection of benzyl esters, Tetrahedron Lett. 34, 4603–4606 (1993).

    Article  CAS  Google Scholar 

  22. (a) D. S. Bose and V. Lakshminarayana, An effcient and highly selective cleavage of N-tert-butoxycarbonyl group under microwave irradiation, Tetrahedron Lett. 39, 5631–5634 (1998); (b) R. S. Varma, Solvent-free organic syntheses using supported reagents and microwave irradiation, Green Chemistry 43–55 (1999).

    Google Scholar 

  23. R. S. Varma and R. K. Saini, Microwave-assisted isomerization of 2’-aminochalcones on clay: an easy route to 2-aryl-1, 2, 3, 4-tetrahydro-4-quinolones, Synlett 857–858 (1997).

    Google Scholar 

  24. M. Lahred and A. Hallberg, Microwave-assisted high-speed chemistry: a new technique in drug discovery, Drug Discov. Today 6, 406–416 (2001).

    Article  Google Scholar 

  25. G. W. Kabalka, R. M. Pagni, and M. Hair, Solventless Suzuki coupling reactions on palladium-doped KF/Al2O3, Org. Lett. 1, 1423–1425 (1999).

    Article  CAS  Google Scholar 

  26. G. W. Kabalka, L. Wang, V. Namboodiri, and R. M. Pagni, Rapid microwave-enhanced, solventless Sonogashira coupling reaction on alumina, Tetrahedron Lett. 41, 5151–5154 (2000).

    Article  CAS  Google Scholar 

  27. B. Westermann and C. Neuhaus, Dihydroxyacetone in amino acid catalyzed Mannich-type reactions, Angew. Chem. Int. Ed. 44, 4077–4079 (2005).

    Article  CAS  Google Scholar 

  28. S. Mossé and A. Alexakis, Organocatalyzed asymmetric reactions via microwave activation, Org. Lett. 8, 3577–3580 (2006).

    Article  Google Scholar 

  29. G. Dessole, R. P. Herrera, and A. Ricci, H-Bonding organocatalysed Friedel–Crafts alkylation of aromatic and heteroaromatic systems with nitroolefins, Synlett 2374–2378 (2004).

    Google Scholar 

  30. For an up to date, concise and useful review of MW theory see: B. L. Hayes, Recent Advances in Microwave-Assisted Synthesis, Aldrichimica Acta 37, 66–76 (2004) and references therein.

    CAS  Google Scholar 

  31. J. J. Chen and S. V. Deshpande, Rapid synthesis of a-ketoamides using microwave irradiation-simultaneous cooling method, Tetrahedron Lett. 44, 8873–8876 (2003).

    Article  CAS  Google Scholar 

  32. J. J. Vanden Eynde and A. Mayence, Synthesis and aromatization of Hantzsch 1, 4-dihydropyridines under microwave irradiation. An overview, Molecules, 8, 381–391 (2003).

    Article  Google Scholar 

  33. L. Bernardi, B. F. Bonini, M. Comes-Franchini, M. Fochi, M. Folegatti, S. Grilli, A. Mazzanti, and A. Ricci, First 1, 3-dipolar cycloaddition of Z-M-phenyl-N-methylnitrone with allylic fluorides: a stereoselective route to enantiopure fluorine-containing isozazolidines and amino polyols, Tetrahedron: Asymmetry 15, 245–250 (2004).

    Article  CAS  Google Scholar 

  34. L. Perreux and A. Loupy, A tentative rationalization of microwave effects in organic synthesis according to the reaction medium and mechanistic considerations, Tetrahedron 57, 9199–9223 (2001) and references therein.

    Article  CAS  Google Scholar 

  35. L. Marrero-Torrero and A. Loupy, Synlett Synthesis of 2-oxazolines from carboxylic acids and α,α,α-tri(hydroxymethyl) methylamine under microwaves in solvent free conditions, 245–246 (1996).

    Google Scholar 

  36. A. Diaz-Ortiz, A. de la Hoz, M. A. Herrero, P. Prieto, A. Sanchez-Migallon, F. P. Cossio, A. Arrieta, S. Vivanco & Concepcion Foces-Foces, Enhancing stereochemical diversity by means of microwave irradiation in the absence of solvent: synthesis of highly substituted nitroproline esters via 1, 3-dipolar reactions, Molecular Diversity 7, 175–180 ( 2003).

    Article  CAS  Google Scholar 

  37. A. Dömling, Recent developments in isocyanide based multicomponent reactions in applied chemistry, Chem. Rev. 106, 17–89 (2006).

    Article  Google Scholar 

  38. (a) C. O. Kappe, D. Kumar, and R. S. Varma, Microwave-assisted high-speed parallel synthesis of 4-aryl-3, 4-dihydropyrimidin-2(1H)-ones using a solventless Biginelli condensation protocol, Synthesis 1799–1803 (1999); (b) U. Bora, A. Saikia and R. C. Boruah, A novel microwave-mediated one-pot synthesis of indolozines via a three-component reaction, Org. Lett. 5, 435–438 (2003).

    Google Scholar 

  39. D. Tejedor, A. Santos-Exposito, D. Gonzales-Cruz, J. J. Marrero-Tellado, and F. Garcia-Tellado, A modular, one-pot, four-component synthesis of polysubstituted 1, 3-oxazolidines, J. Org. Chem. 70, 1042–1045 (2005).

    Article  CAS  Google Scholar 

  40. L. Dhar, S. Yadav, and R. Kappor, Solvent-free microwave activated three-component synthesis of thiazolo-s-triazine C-nucleosides, Tetrahedron Lett. 44, 8951–8954 (2003).

    Article  Google Scholar 

  41. U. Bora, A. Saikia, and R. C. Boruah, A novel microwave-mediated one-pot synthesis of indolizines via a three-component reaction, Org. Lett. 5, 435–438 (2003).

    Article  CAS  Google Scholar 

  42. V. Bailliez, R. M. de Figueiredo, A. Olesker, and J. Cleophax, A practical large-scale access to 1, 6-anhydro-β-D-hexopyranoses by a solid-supported solvent-free microwave-assisted procedure, Synthesis 1015–1017 (2003).

    Google Scholar 

  43. N. Gospodinova, A. Grelard, M. Jeannin, G. C. Chitanu, A. Carpov, V. Thiery, and T. Besson, Efficient solvent-free microwave phosphorylation of microcrystalline cellulose, Green Chemistry 4, 220–222 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Ricci, A. (2008). Solventless Reactions Under Microwave Activation: Safety and Efficiency at the Service of Customer-friendly Chemistry. In: Mordini, A., Faigl, F. (eds) New Methodologies and Techniques for a Sustainable Organic Chemistry. NATO Science Series II: Mathematics, Physics and Chemistry, vol 246. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6793-8_10

Download citation

Publish with us

Policies and ethics