The previous chapters have described what cancer genes are and how they are acquired. But what do cancer genes do? How do the inactivation of tumor suppressor genes and activation of proto-oncogenes alter cell clones so that they evolve into cancers? The answer to this question has been revealed by the functional analysis of the proteins encoded by cancer genes and their wild-type counterparts. Cancer genes populate cellular pathways that control cellular proliferation and cell death.


Epidermal Growth Factor Receptor Fanconi Anemia MDM2 Protein Receptor Protein Tyrosine Kinase Cytoplasmic Tyrosine Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bakkenist, C. J. & Kastan, M. B. Initiating cellular stress responses. Cell 118, 9–17 (2004).PubMedCrossRefGoogle Scholar
  2. Bensaad, K. & Vousden, K. H. P53: New roles in metabolism. Trends Cell Biol. 17, 286–291 (2007).PubMedCrossRefGoogle Scholar
  3. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001).PubMedCrossRefGoogle Scholar
  4. Cohen, P. The origins of protein phosphorylation. Nat. Cell Biol. 4, E127–E130 (2002).PubMedCrossRefGoogle Scholar
  5. Dang, V. V. et al. The c-Myc target gene network. Semin Cancer Biol. 16, 253–264 (2006).PubMedCrossRefGoogle Scholar
  6. Giaccia, A. J. & Kastan, M. B. The complexity of p53 modulation: Emerging patterns from divergent signals. Genes Dev. 12, 2973–2983 (1998).PubMedCrossRefGoogle Scholar
  7. Giacinti, C. & Giordano, A. RB and cell cycle progression. Oncogene 25, 5220–5227 (2006).PubMedCrossRefGoogle Scholar
  8. Hajra, K. M. & Fearon, E. R. Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer 34, 255–268 (2002).PubMedCrossRefGoogle Scholar
  9. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).PubMedCrossRefGoogle Scholar
  10. Horn, H. F. & Vousden, K. H. Coping with stress: Multiple ways to activate p53. Oncogene 26, 1306–1316 (2007).PubMedCrossRefGoogle Scholar
  11. Kastan, M. B. & Bartek, J. Cell-cycle checkpoints and cancer. Nature 432, 316–323 (2004).PubMedCrossRefGoogle Scholar
  12. Kastan, M. B. & Lim, D. S. The many substrates and functions of ATM. Nat. Rev. Mol. Cell Biol. 1, 179–86 (2000).PubMedCrossRefGoogle Scholar
  13. Linding, R. et al. Systematic discovery of in vivo phosphorylation networks. Cell 129, 1415–1426 (2007).PubMedCrossRefGoogle Scholar
  14. Massague, J. & Gomis, R. R. The logic of TGFbeta signaling. FEBS Lett. 580, 2811–2820 (2006).PubMedCrossRefGoogle Scholar
  15. Nelson, W. J. & Nusse, R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303, 1483–1487 (2004).PubMedCrossRefGoogle Scholar
  16. Polakis, P. The many ways of Wnt in cancer. Curr. Opin. Genet. Dev. 17, 45–51 (2007).PubMedCrossRefGoogle Scholar
  17. Samuels, Y. & Ericson, K. Oncogenic PI3K and its role in cancer. Curr. Opin. Oncol. 18, 77–82 (2006).PubMedCrossRefGoogle Scholar
  18. Sansal, I. & Sellers, W. R. The biology and clinical relevance of the PTEN tumor suppressor pathway. J. Clin. Oncol. 22, 2954–2963 (2004).PubMedCrossRefGoogle Scholar
  19. Scott, J. D. & Pawson, T. Cell communication: The inside story. Sci. Am. 282, 72–79 (2000).PubMedCrossRefGoogle Scholar
  20. Sears, R. C. The life cycle of C-myc: From synthesis to degradation. Cell. Cycle 3, 1133–1137 (2004).PubMedGoogle Scholar
  21. Shields, J. M., Pruitt, K., McFall, A., Shaub, A. & Der, C. J. Understanding Ras: ‘It ain’t over ‘til it’s over’. Trends Cell Biol. 10, 147–154 (2000).PubMedCrossRefGoogle Scholar
  22. Simpson, L. & Parsons, R. PTEN: Life as a tumor suppressor. Exp. Cell Res. 264, 29–41 (2001).PubMedCrossRefGoogle Scholar
  23. Toledo, F. & Wahl, G. M. Regulating the p53 pathway: In vitro hypotheses, in vivo veritas. Nat. Rev. Cancer 6, 909–923 (2006).PubMedCrossRefGoogle Scholar
  24. Venkitaraman, A. R. Medicine: Aborting the birth of cancer. Nature 434, 829–830 (2005).PubMedCrossRefGoogle Scholar
  25. Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2, 489–501 (2002).PubMedCrossRefGoogle Scholar
  26. Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nat. Med. 10, 789–799 (2004).PubMedCrossRefGoogle Scholar
  27. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).PubMedCrossRefGoogle Scholar
  28. Vousden, K. H. & Lane, D. P. P53 in Health and Disease. Nat. Rev. Mol. Cell Biol. 8, 275–283 (2007).PubMedCrossRefGoogle Scholar
  29. Zhao, J. J. & Roberts, T. M. PI3 kinases in cancer: From oncogene artifact to leading cancer target. Sci. STKE 2006, pe52 (2006).PubMedCrossRefGoogle Scholar
  30. Zhou, B. B. & Elledge, S. J. The DNA damage response: Putting checkpoints in perspective. Nature 408, 433–439 (2000).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Personalised recommendations