Skip to main content

Eph Receptor Tyrosine Kinases: Modulators of Angiogenesis

  • Chapter
Retinal and Choroidal Angiogenesis

Abstract

Angiogenesis, or the outgrowth of new sprouts from pre-existing vessels, involves a complex cascade of events. Among the diverse array of molecules involved in angiogenesis, receptor tyrosine kinases (RTKs) have emerged as critical mediators of neovascularization. This review will focus on the youngest family of essential vascular RTKs, the Eph receptors, and ephrins, their corresponding ligands. We will summarize our current understanding of Eph/ephrin function in vascular remodeling during embryogenesis and in neovascularization and tumorigenesis in adult tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Lee, C. C. Wang, and A. P. Adamis, Ocular neovascularization: An epidemiological review, Surv. Ophthalmol. 43, 245-269 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. M. A. Speicher et al., Pharmacologic therapy for diabetic retinopathy, Expert Opin. Emerg. Drugs 8, 239-250 (2003).

    Article  PubMed  CAS  Google Scholar 

  3. G. D. Yancopoulos et al., Vascular-specific growth factors and blood vessel formation, Nature 407, 242-248 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. A. W. Griffioen and G. Molema, Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation, Pharmacol. Rev. 52 (2), 237-268 (2000).

    PubMed  CAS  Google Scholar 

  5. G. Bergers and L. E. Benjamin, Tumorigenesis and the angiogenic switch, Nat. Rev. Cancer 3 (6), 401-410 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. R. Kerbel and J. Folkman, Clinical translation of angiogenesis inhibitors, Nature Review/Cancer 2, 727-739 (2002).

    Article  CAS  Google Scholar 

  7. N. W. Gale and G. D. Yancopoulos, Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development, Genes & Development 13, 1055-1066 (1999).

    CAS  Google Scholar 

  8. M. Boulton et al., VEGF localisation in diabetic retinopathy, Br. J. Ophthalmol. 82, 561-568 (1998).

    Google Scholar 

  9. E. A. Pierce et al., Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization, Proc. Natl. Acad. Sci. USA 92, 905-909 (1995).

    Google Scholar 

  10. S. G. Robbins et al., Detection of vascular endothelial growth factor (VEGF) protein in vascular and non-vascular cells of the normal and oxygen-injured rat retina, Growth Factor 14, 279-295 (1997).

    Article  Google Scholar 

  11. S. G. Robbins, V. S. Rajaratnam, and J. S. Penn, Evidence for upregulation and redistribution of vascular endothelial growth factor receptors flt-1 and flk-1 in the oxygen-injured rat retina, Growth Factors 16, 1-9 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. L. P. Aiello et al., Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins, Proc. Natl. Acad. Sci. USA 92, 10457-10461 (1995).

    Google Scholar 

  13. G. S. Robinson et al., Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy, Proc. Natl. Acad. Sci. USA 93, 4851-4856 (1996).

    Google Scholar 

  14. M. Hangai et al., Systemically expressed soluble Tie2 inhibits intraocular neovascularization, Hum. Gene Ther. 12, 1311-1321 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. H. Takagi et al., Potential role of the angiopoietin/tie2 system in ischemia-induced retinal neovascularization, Invest. Ophthalmol. Vis. Sci. 44, 393-402 (2003).

    Article  PubMed  Google Scholar 

  16. E. N. Committee, Unified nomenclature for Eph family receptors and their ligands, the Ephrins, Cell 90, 403-404 (1997).

    Article  Google Scholar 

  17. N. W. Gale et al., Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis, Neuron 17, 9-19 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. J. P. Himanen et al., Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling, Nat. Neurosci. 7, 501-509 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. K. Bruckner et al., EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains, Neuron 22, 511-524 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. R. Torres, B. L. Firestein, H. Dong, J. Staudinger, E. N. Olson, R. L. Huganir, and G. D. Yancopoulos, PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands, Cell 21, 1453-1463 (1998).

    CAS  Google Scholar 

  21. J. P. Himanen et al., Crystal structure of an Eph receptor-ephrin complex, Nature 414, 933-938 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. K. Kullander and R. Klein, Mechanisms and functions of Eph and ephrin signaling, Nat. Rev. Mol. Cell Biol. 3, 475 (2002).

    Article  PubMed  CAS  Google Scholar 

  23. N. K. Noren and E. B. Pasquale, Eph receptor-ephrin bidirectional signals that target Ras and Rho proteins, Cell Signal. 16, 655-666 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. R. H. Adams et al., Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis, Genes & Development 3, 295-306 (1999).

    Google Scholar 

  25. R. K. Baker and P. B. Antin, Ephs and ephrins during early stages of chick embryogenesis, Dev. Dyn. 228 (1), 128-142 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. P. M. Helbling, D. M. Saulnier, and A. W. Brandli, The receptor tyrosine kinase EphB4 and ephrin-B ligands restrict angiogenic growth of embryonic veins in Xenopus laevis, Development 127 (2), 269-278 (2000).

    PubMed  CAS  Google Scholar 

  27. K. Othman-Hassan et al., Arterial identity of endothelial cells is controlled by local cues, Dev. Biol. 237 (2), 398-409 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. H. U. Wang, Z. F. Chen, and D. J. Anderson, Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4, Cell 93, 741-753 (1998).

    Article  PubMed  CAS  Google Scholar 

  29. S. S. Gerety, et al., Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development, Molecular Cell 4, 403-414 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. R. H. Adams et al., The cytoplasmic domain of the ligand ephrinB2 is required for vascular morphogenesis but not cranial neural crest migration, Cell 104, 57-69 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. Z. Wang et al., Ephrin receptor, EphB4, regulates ES cell differentiation of primitive mammalian hemangioblasts, blood, cardiomyocytes, and blood vessels, Blood 4, 4 (2003).

    Google Scholar 

  32. N. W. Gale, et al., Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells, Dev. Biol. 230, 151-160 (2001).

    Article  PubMed  CAS  Google Scholar 

  33. D. Shin et al., Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization, Dev. Biol. 230 (2), 139-150 (2001).

    Article  PubMed  CAS  Google Scholar 

  34. Y. Oike et al., Regulation of vasculogenesis and angiogenesis by EphB/ephrin-B2 signaling between endothelial cells and surrounding mesenchymal cells, Blood 100 (4), 1326-1333 (2002).

    PubMed  CAS  Google Scholar 

  35. S. S. Gerety and D. J. Anderson, Cardiovascular ephrinB2 function is essential for embryonic angiogenesis, Development 129 (6), 1397-1410 (2002).

    PubMed  CAS  Google Scholar 

  36. X. Q. Zhang et al., Stromal cells expressing ephrin-B2 promote the growth and sprouting of ephrin-B2(+) endothelial cells, Blood 98 (4), 1028-1037 (2001).

    Article  PubMed  CAS  Google Scholar 

  37. T. Fuller et al., Forward EphB4 signaling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells, J. Cell Sci. 116 (Pt 12), 2461-2470 (2003).

    Article  PubMed  CAS  Google Scholar 

  38. K. Hamada et al., Distinct roles of ephrin-B2 forward and EphB4 reverse signaling in endothelial cells, Arterioscler. Thromb. Vasc. Biol. 23 (2), 190-197 (2003).

    Article  PubMed  CAS  Google Scholar 

  39. D. M. Brantley et al., Soluble EphA receptors inhibit tumor angiogenesis and progression in vivo, Oncogene 21, 7011-7026 (2002).

    Article  PubMed  CAS  Google Scholar 

  40. N. Cheng et al., Blockade of EphA receptor tyrosine kinase activation inhibits VEGF-induced angiogenesis, Mol. Cancer Res. (formerly Cell Growth and Differentiation) 1, 2-11 (2002).

    CAS  Google Scholar 

  41. T. O. Daniel et al., Elk and LERK-2 in developing kidney and microvascular endothelial assembly, Kidney Int. Suppl. 57, S73-S81 (1996).

    PubMed  CAS  Google Scholar 

  42. J. L. McBride and J. C. Ruiz, ephrinA1 is expressed at sites of vascular development in the mouse, Mech. Dev. 77, 201-204 (1998).

    Article  PubMed  CAS  Google Scholar 

  43. A. Pandey et al., Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-alpha-induced angiogenesis, Science 268 (5210), 567-569 (1995).

    Article  PubMed  CAS  Google Scholar 

  44. H. Takahashi and T. Ikeda, Molecular cloning and expression of rat and mouse B61 gene: implications on organogenesis, Oncogene 11 (5), 879-883 (1995).

    PubMed  CAS  Google Scholar 

  45. K. Nagashima et al., Adaptor protein Crk is required for ephrin-B1-induced membrane ruffling and focal complex assembly of human aortic endothelial cells, Mol. Biol. Cell 13 (12), 4231-4242 (2002).

    Article  PubMed  CAS  Google Scholar 

  46. Y. Sawai et al., Expression of ephrin-B1 in hepatocellular carcinoma: possible involvement in neovascularization, J. Hepatol. 39 (6), 991-996 (2003).

    Article  PubMed  CAS  Google Scholar 

  47. E. Stein et al., Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses, Genes Dev. 12 (5), 667-678 (1998).

    PubMed  CAS  Google Scholar 

  48. U. Huynh-Do et al., Ephrin-B1 transduces signals to activate integrin-mediated migration, attachment and angiogenesis, J. Cell Sci. 115, 3073-3081 (2002).

    PubMed  CAS  Google Scholar 

  49. C. Vindis et al., EphB1 recruits c-Src and p52Shc to activate MAPK/ERK and promote chemotaxis, J. Cell Biol. 162 (4), 661-671 (2003).

    Article  PubMed  CAS  Google Scholar 

  50. H. Maekawa et al., Ephrin-B2 induces migration of endothelial cells through the phosphatidylinositol-3 kinase pathway and promotes angiogenesis in adult vasculature, Arterioscler. Thromb. Vasc. Biol. 23 (11), 2008-2014 (2003).

    Article  PubMed  CAS  Google Scholar 

  51. D. Brantley-Sieders et al., EphA2 receptor tyrosine kinase regulates endothelial cell migration and assembly through phosphoinositide 3-kinase-mediated Rac1 GTPase activation, J. Cell Sci. 117, 2037-2049 (2004).

    Article  PubMed  CAS  Google Scholar 

  52. H. Fujiwara et al., Human endometrial epithelial cells express ephrin A1: possible interaction between human blastocysts and endometrium via Eph-ephrin system, J. Clin. Endocrinol. Metab. 87 (12), 5801-5807 (2002).

    Article  PubMed  CAS  Google Scholar 

  53. L. C. Kao et al., Expression profiling of endometrium from women with endometriosis reveals candidate genes for disease-based implantation failure and infertility, Endocrinology 144 (7), 2870-2881 (2003).

    Article  PubMed  CAS  Google Scholar 

  54. G. Berclaz et al., Activation of the receptor protein tyrosine kinase EphB4 in endometrial hyperplasia and endometrial carcinoma, Ann. Oncol. 14, 220-226 (2003).

    Article  PubMed  CAS  Google Scholar 

  55. N. Takai et al., Expression of receptor tyrosine kinase EphB4 and its ligand ephrin-B2 is associated with malignant potential in endometrial cancer, Oncol. Rep. 8, 567-573 (2001).

    PubMed  CAS  Google Scholar 

  56. S. Ozuysal et al., Angiogenesis in endometrial carcinoma: correlation with survival and clinicopathologic risk factors, Gynecol. Obstet. Invest. 55 (3), 173-177 (2003).

    Article  PubMed  Google Scholar 

  57. J. S. Davis, B. R. Rueda, and K. Spanel-Borowski, Microvascular endothelial cells of the corpus luteum, Reprod. Biol. Endocrinol. 1 (1), 89 (2003).

    Article  PubMed  Google Scholar 

  58. M. Egawa et al., Ephrin B1 is expressed on human luteinizing granulosa cells in corpora lutea of the early luteal phase: the possible involvement of the B class Eph-ephrin system during corpus luteum formation, J. Clin. Endocrinol. Metab. 88 (9), 4384-4392 (2003).

    Article  PubMed  CAS  Google Scholar 

  59. M. E. Schaner et al., Gene expression patterns in ovarian carcinomas, Mol. Biol. Cell 14 (11), 4376-4386 (2003).

    Article  PubMed  CAS  Google Scholar 

  60. K. Ogawa et al., The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization, Oncogene 19, 6043-6052 (2000).

    Article  PubMed  CAS  Google Scholar 

  61. N. Cheng et al., Inhibition of VEGF-dependent multi-stage carcinogenesis by soluble EphA receptors, Neoplasia 5, 445-456 (2003).

    PubMed  CAS  Google Scholar 

  62. J. Chen et al., Germline inactivation of the murine Eck receptor tyrosine kinase by retroviral insertion, Oncogene 12, 979-988 (1996).

    PubMed  CAS  Google Scholar 

  63. C. M. Naruse-Nakajima, M. Asano, and Y. Iwakura, Involvement of EphA2 in the formation of the tail notochord via interaction with ephrinA1, Mech. Dev. 102, 95-105 (2001).

    Article  PubMed  CAS  Google Scholar 

  64. D. M. Brantley-Sieders et al., Impaired tumor microenvironment in EphA2-deficient mice inhibits tumor angiogenesis and metastatic progression, FASEB J. 19, 1884-1886 (2005).

    PubMed  CAS  Google Scholar 

  65. W. Liu et al., Effects of overexpression of ephrin-B2 on tumour growth in human colorectal cancer, Br. J. Cancer 90, 1620-1626 (2004).

    Article  PubMed  CAS  Google Scholar 

  66. N. K. Noren et al., Interplay between EphB4 on tumor cells and vascular ephrin-B2 regulates tumor growth, Proc. Natl. Acad. Sci. U S A. 101, 5583-5588 (2004).

    Google Scholar 

  67. G. Martiny-Baron et al., Inhibition of tumor growth and angiogenesis by soluble EphB4, Neoplasia 6, 248-257 (2004).

    Article  PubMed  CAS  Google Scholar 

  68. C. Deroanne et al., EphrinA1 inactivates integrin-mediated vascular smooth muscle cell spreading via the Rac/PAK pathway, J. Cell Sci. 116, 1367-1376 (2003).

    Article  PubMed  CAS  Google Scholar 

  69. A. P. Adamis, L. P. Aiello, and R. A. D’Amato, Angiogenesis and ophthalmic disease, Angiogenesis 3 (1), 9-14 (1999).

    Article  PubMed  CAS  Google Scholar 

  70. J. J. Steinle et al., Role of ephrin B2 in human retinal endothelial cell proliferation and migration, Cell. Signal. 15 (11), 1011-1017 (2003).

    Article  PubMed  CAS  Google Scholar 

  71. N. Umeda et al., Expression of ephrinB2 and its receptors on fibroproliferative membranes in ocular angiogenic diseases, Am. J. Ophthalmol. 138, 270-279 (2004).

    Article  PubMed  CAS  Google Scholar 

  72. J. Chen et al., Inhibition of retinal neovascularization by soluble EphA2 receptor, Exp. Eye Res. 82 (4), 664-673 (2006).

    Article  PubMed  CAS  Google Scholar 

  73. D. Orioli et al., Sek4 and Nuk receptors cooperate in guidance of commissural axons and in palate formation, EMBO J. 15, 6035-6049 (1996).

    PubMed  CAS  Google Scholar 

  74. M. Henkemeyer et al., Nuk controls pathfinding of commissural axons in the mammalian central nervous system, Cell 86, 35-46 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chen, J., Brantley-Siders, D., Penn, J.S. (2008). Eph Receptor Tyrosine Kinases: Modulators of Angiogenesis. In: Penn, J. (eds) Retinal and Choroidal Angiogenesis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6780-8_11

Download citation

Publish with us

Policies and ethics