Soil Quality and Methods for its Assessment

  • Diego de la Rosa
  • Ramon Sobral

Environmental sustainability will only be achieved by maintenance and improvement of soil quality. Soil quality is considered as the capacity of a soil to function. Its assessment focuses on dynamic aspects to evaluate the sustainability of soil management practices. In this chapter, a wide perspective of soil quality and the complex task of its assessment, considering the inherent and dynamic factors, are introduced. It focuses on the possibilities of applying and integrating the accumulated knowledge in agroecological land evaluation in order to predict soil quality. Advanced information technologies in modern decision support tools enable the integration of large and complex databases, models, tools, and techniques, and are proposed to improve the decision-making process in soil quality management. Although universal recommendations on soil quality and sustainability of soil management must not be done, this chapter presents general trends in soil quality management strategies. This includes arable land identification, crop diversification, organic matter restoration, tillage intensity, and soil input rationalization.


Agroecological land evaluation dynamic soil quality inherent soil quality MicroLEIS soil function soil health soil indicator spatial decision support tool sustainable agricultural system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antoine, J. (1994). Linking geographical information systems (GIS) and FAO’s agro-ecological zone (AEZ) models for land resource appraisal. FAO World Soil Resources, Report 75. Rome, FAO.Google Scholar
  2. Arias, M. E., Gonzalez-Perez, J. A., Gonzalez-Vila, F. J., & Ball A. (2005). Soil health-a new challenge for microbiologists and chemists. International Microbiology, 8, 13–21.Google Scholar
  3. Arshad, M. A. (1999). Tillage and soil quality: Tillage practices for sustainable agriculture and environmental quality in different agro-ecosystems. Soil & Tillage Research, 53, 1–2.CrossRefGoogle Scholar
  4. Arshad, M. A., & Martin, S. (2002). Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, Ecosystems & Environment, 88, 153–160.CrossRefGoogle Scholar
  5. Ball, A., & De la Rosa, D. (2006). Modeling possibilities for the assessment of soil systems. In: N. Uphoff, A. Ball, E. Fernandes, H. Herren, O. Husson, M. Laing, Ch. Palm, J. Pretty, P. Sanchez, N. Sanginga, & J. Thies (Eds.), Biological approaches to sustainable soil systems (pp.683–692). Boca Raton, FL: Taylor & Francis/CRC Press.Google Scholar
  6. Bergstrom, D. W., Monreal, C. M., & King, D. J. (1998). Sensitivity of soil enzyme activity to conservation practices. Soil Science Society of America Journal, 62, 1286–1295.Google Scholar
  7. CGIAR. (2006). Consultative Group on International Agricultural Research. Available at (Retrieved on 24 February 2006.)
  8. Davidson, D. (1992). The evaluation of land resources. Harlow, Essex, UK: Longman.Google Scholar
  9. Davidson, D. (2000). Soil quality assessment: Recent advances and controversies. Progress in Environmental Science, 2, 342–350.Google Scholar
  10. De la Rosa, D. (Ed.) (1984). Catalogo de suelos de Andalucia. Sevilla, Spain: Agencia de Medio Ambiente, Junta de Andalucia.Google Scholar
  11. De la Rosa, D. (2005). Soil quality evaluation and monitoring based on land evaluation. Land Degradation & Development, 16, 551–559.CrossRefGoogle Scholar
  12. De la Rosa, D., & Moreira, J. M. (Eds.) (1987). Evaluacion agro-ecologica de recursos naturales de Andalucia. Sevilla, Spain: Agencia de Medio Ambiente, Junta de Andalucia.Google Scholar
  13. De la Rosa, D., Moreno, J. A., Garcia, L. V., & Almorza, J. (1992). MicroLEIS: A microcomputer-based Mediterranean land evaluation information system. Soil Use & Management, 8, 89–96.CrossRefGoogle Scholar
  14. De la Rosa, D., Mayol, F., Moreno, J. A., Bonson, T., & Lozano, S. (1999). An expert system/neural network model (ImpelERO) for evaluating agricultural soil erosion in Andalucia region. Agriculture, Ecosystems & Environment, 73, 211–226.CrossRefGoogle Scholar
  15. De la Rosa, D., Moreno, J. A., Mayol, F., & Bonson, T. (2000). Assessment of soil erosion vulnerability in western Europe and potential impact on crop productivity due to loss of soil depth using the ImpelERO model. Agriculture, Ecosystems & Environment, 81, 179–190.CrossRefGoogle Scholar
  16. De la Rosa, D., Mayol, F., Moreno, F., Cabrera, F., Diaz-Pereira, E., & Antoine, J. (2002). A multilingual soil profile database (SDBm Plus) as an essential part of land resources information systems. Environmental Modeling & Software, 17, 721–730.CrossRefGoogle Scholar
  17. De la Rosa, D., & Van Diepen, C. (2003). Qualitative and quantitative land evaluation. In W. Verheye (Ed.), 1.5 Land Use and Land Cover, Encyclopedia of Life Support System (EOLSS-UNESCO). Oxford: Eolss. Available at
  18. De la Rosa, D., Mayol, F., Diaz-Pereira, E., Fernandez, M., & De la Rosa, D., Jr. (2004). A land evaluation decision support system (MicroLEIS DSS) for agricultural soil protection. Environmental Modeling & Software, 19, 929–942. Available at
  19. Derpsch, R., & Benites, J. (2003). Situation of conservation agriculture in the world. In: Proceedings of the Second World Congress on Conservation Agriculture: Producing in harmony with nature. Iguasu, Brasil/Rome: FAO.Google Scholar
  20. Dexter, A. R., & Bird, N. R. A. (2001). Methods for predicting the optimum and the range of soil water contents for tillage based on the water retention curve. Soil & Tillage Research, 57, 203–212.CrossRefGoogle Scholar
  21. Dexter, A. R. (2004). Soil physical quality. Part I. Theory, effects of soil texture, density and organic matter, and effects on root growth. Geoderma, 120, 201–214.CrossRefGoogle Scholar
  22. Doran, J. W., & Jones, A. J. (1996). Methods for assessing soil quality. SSSA Special Publication 49. Madison, WI: Soil Science Society of America.Google Scholar
  23. Doran, J. W., Sarrantonio, M., & Liebig, M. A. (1997). Soil health and sustainability. Advances in Agronomy, 56, 1–54.CrossRefGoogle Scholar
  24. EC. (2002). Towards a thematic strategy for soil protection. Communication from the EC to the European Parliament. COM 2002, 179 final. Available at
  25. FAO. (1976). A framework for land evaluation. Soils Bulletin, 32. Rome: FAO.Google Scholar
  26. FAO. (1978). Report on the Agro-ecological Zones Project. World Soil Resources Report, 48. Rome: FAO.Google Scholar
  27. FAO-CSIC, (2003). The multilingual soil profile database SDBm Plus. Land and Water Digital Media Series, 23. Rome: FAO.Google Scholar
  28. Gomez, J. A., Giraldez, J. V., Pastor, M., & Fereres, E. (1999). Effects of tillage methods on soil physical properties, infiltration and yield in an olive orchard. Soil & Tillage Research, 52, 167–175.CrossRefGoogle Scholar
  29. ICASA. (2006). International Consortium for Agricultural Systems Application. Available at (Retrieved on 20 February 2006)
  30. Imeson, A., Arnoldussen, A., De la Rosa, D., Montanarella, L., Dorren, L., Curfs, M., Arnalds, O., & Van Asselen, S. (2006). SCAPE: Soil conservation and protection in Europe. The way ahead. Luxembourg: CEE-JRC.Google Scholar
  31. Karlen, D. L., Mausbach, M. J., Doran, J. W., Cline, R. G., Harris, R. F., & Schuman, G. E. (1997). Soil quality: A concept, definition and framework for evaluation. Soil Science Society of America Journal, 61, 4–10.Google Scholar
  32. Martinez-Raya, A. (2003). Evaluacion y control de la erosion hidrica en suelos agricolas en pendiente, en clima mediterraneao. In: R. Bienes & M. J. Marques (Eds.), Perspectivas de la degradacion del suelo (pp.109–122). I Simposio Nacional de Erosion de Suelos.Google Scholar
  33. Moreno, F., Murillo, J. M., Pelegrin, F., & Giron, I. F. (2006). Long-term impact of conservation tillage on stratification ratio of soil organic carbon and loss of total and active CaCO3. Soil & Tillage Research, 85, 86–93.CrossRefGoogle Scholar
  34. Moscatelli, G.; Sobral, R. (2005). Avances en la selección de indicadores de calidad para las series de suelos representativas de la region Pampeana, Argentina. Buenos Aires: INTA. Available at
  35. Nortcliff, S., (2002). Standardization of soil quality attributes. Agriculture, Ecosystems & Environment, 88, 161–168.CrossRefGoogle Scholar
  36. Oxley, T., McIntosh, B. S., Winder, N., Mulligan, M., & Engelen, G. (2004). Integrated modelling and decision support tools: A Mediterranean example. Environmental Modeling & Software, 19, 999–1010.CrossRefGoogle Scholar
  37. Pachepsky, Y., & Rawls, W. J. (2004). Development of pedotransfer functions in soil hydrology. Development in Soil Science, Vol. 30. Amsterdam: Elsevier.CrossRefGoogle Scholar
  38. Quilchano, C., & Marañon, T., (2002). Dehydrogenase activity in Mediterranean forest soils. Biological Fertility Soils, 35, 102–107.CrossRefGoogle Scholar
  39. Rossiter, D. (2003). Biophysical models in land evaluation. In W. Verheye (Ed.), 1.5 Land Use and Land Cover, Encyclopedia of Life Support System (EOLSS-UNESCO). Oxford: Eolss. Available at
  40. Sojka, R. E., & Upchurch, D: R. (1999). Reservations regarding the soil quality concept. Soil Science Society of America Journal, 63, 1039–1054.CrossRefGoogle Scholar
  41. Storie, R. E. (1933). An index for rating the agricultural value of soils. California Agricultural Experimental Station Bulletin, 556.Google Scholar
  42. Thies, J. E. (2006). Measuring and assessing soil biological properties. In: N. Uphoff, A. Ball, E. Fernandes, H. Herren, O. Husson, M. Laing, Ch. Palm, J. Pretty, P. Sanchez, N. Sanginga & J. Thies (Eds.), Biological approaches to sustainable soil systems (pp. 655–670). Boca Raton, FL: Taylor & Francis/CRC Press.Google Scholar
  43. Thysen, I. (2000). Agriculture in the information society. Journal of Agricultural Engineering Research, 76, 297–303.CrossRefGoogle Scholar
  44. Uphoff, N. (Ed.) (2002). Agro-ecological innovations: Increasing food production with participatory development. London: Earthscan.Google Scholar
  45. Uphoff, N., Ball, A., Fernandes, E., Herren, H., Husson, O., Laing, M., Palm, Ch., Pretty, J., Sanchez, P., Sanginga, N., & Thies, J. (Eds.) (2006). Biological approaches to sustainable soil systems. Boca Raton, FL: Taylor & Francis/CRC Press.Google Scholar
  46. USDA. (1961). Land capability classification. Agriculture handbook 210. Washington, DC: U.S. Government Printing Office.Google Scholar
  47. USDA. (2006). Soil Quality Institute. Natural resources conservation service. Available at (Retrieved on 20 February 2006.)
  48. Van Lanen, H. A. J. (1991). Qualitative and quantitative physical land evaluation: An operational approach. Ph.D. thesis. Wageningen, The Netherlands: Wageningen Agricultural University.Google Scholar
  49. Verheye, W. (1988). The status of soil mapping and land evaluation for land use planning in the European Community. In: J. M. Boussard (Ed.), Agriculture: Socio-economic factors in land evaluation. Luxembourg: Office for Official Publications of the EU.Google Scholar
  50. Wallace, A. (1994). Soil organic matter must be restored to near original levels. Communications in Soil Science & Plant Analysis, 25, 29–35.CrossRefGoogle Scholar
  51. Warkentin, B. P. (1995). The changing concept of soil quality. Journal of Soil & Water Conservation, 50, 226–228.Google Scholar
  52. Wischmeier, W. H., & Smith, D. D. (1965). Predicting rainfall erosion based from cropland east of the Rocky Mountains. Agriculture Handbook, 282. Washington, DC: U.S. Government Printing Office.Google Scholar
  53. Wolfe, D. (2006). Approaches to monitoring soil systems. In N. Uphoff, A. Ball, E. Fernandes, H. Herren, O. Husson, M. Laing, Ch. Palm, J. Pretty, P. Sanchez, N. Sanginga & J. Thies (Eds.), Biological approaches to sustainable soil systems (pp. 671–681). Boca Raton, FL: Taylor & Francis/CRC Press.Google Scholar
  54. Zalidis, G., Stamatiadis, S., Takavakoglou, V., Eskridge, K., & Misopolinos, N. (2002). Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. Agriculture, Ecosystems & Environment, 88, 137–146.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Diego de la Rosa
    • 1
  • Ramon Sobral
    • 2
  1. 1.Spanish Research CouncilSpain
  2. 2.Argentina National Institute of Agriculture ResearchArgentina

Personalised recommendations