Skip to main content

Microscopic analysis of plant-bacterium interactions using auto fluorescent proteins

  • Chapter
  • First Online:

Abstract

Plant growth promoting rhizobacteria (PGPR) include bacteria that fix nitrogen (e.g., Rhizobiaceae, Herbaspirillum, Azoarcus), produce phytohormones (e.g., Azospirillumi) and provide protection against fungal and/or bacterial pathogens (e.g., Pseudomonas, Bacillus, Streptomyces). Interactions between PGPR and plants can be divided into different steps which include initial attraction, attachment, proliferation and colonization e.g., of roots, stem, leaves and flowers. At the genetic level the expression of many bacterial genes are altered during these processes. In addition to the interaction with the plant, PGPR interact and compete with the endogenous microflora, consisting of other bacteria, fungi and/or mycorrhizal fungi. In the case of biocontrol bacterial strains, a direct interaction with the pathogen is often required to suppress the disease. Microscopic analyses of plant growth promoting rhizobacteria (PGPR) in their natural environment and in specific during their interaction(s) with the host plant(s) and/or their target organism(s) is essential for the elucidation of their functioning and the successful application of commercial inoculants. With the discovery and development of auto fluorescent proteins (AFPs) as markers and the development of highly sophisticated fluorescence microscopes such as confocal laser scanning microscopes, a new dimension has been created for studying PGPR in their natural environment. This paper will give a short overview on available tools, the application of AFPs in PGPR research and some future perspectives. Several recent reviews will give the reader an option for further reading (Bloemberg and Lugtenberg 2004; Chalfie and Kain 2005; Larrainzar et al. 2005; Rediers et al. 2005; Bloemberg and Camacho 2006).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achouak, W., Conrod, S., Cohen, V., & Heulin, T. (2004). Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonization strategy. Molecular Plant Microbe Interactions, 17, 872–879.

    Article  CAS  PubMed  Google Scholar 

  • Aldon, D., Brito, B., Boucher, C., & Genin, S. (2000). A bacterial sensor of plant cell contact controls the transcriptional induction of Ralstonia solanacearum pathogenicity genes. EMBO Journal, 19, 2304–2314.

    Article  CAS  PubMed  Google Scholar 

  • Allaway, D., Schofield, N. A., Leonard, M. E., Gilardoni, L., Finan, T. M., & Poole, P. S. (2001). Use of differential fluorescence induction and optical trapping to isolate environmentally induced genes. Environmental Microbiology, 3, 397–406.

    Article  CAS  PubMed  Google Scholar 

  • Andersen. J, B., Heydorn, A., Hentzer, M., Eberl, L., Geisenberg, O., Christensen, B. B., Molin, S., & Givskov, M. (2001). Gfp-Based N-acyl homoserine-lactone sensor systems for detection of bacterial communities. Applied and Environmental Microbiology, 67, 575–585.

    Article  CAS  PubMed  Google Scholar 

  • Andersen, J. B., Sternberg, C., Poulsen, L. K., Bjorn, S. P., Givskov, M., & Molin, S. (1999). New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Applied and Environmental Microbiology, 64, 2240–2246.

    Google Scholar 

  • Baehler, E., Bottiglieri, M., Pechy-Tarr, M., Maurhofer, M., & Keel, C. (2005). Use of green fluorescent protein-based reporters to monitor balanced production of antifungal compounds in the biocontrol agent Pseudomonas fluorescens CHA0. Journal of Applied Microbiology, 99, 24–38.

    Article  CAS  PubMed  Google Scholar 

  • Biancotto, V., Andreotti, S., Balestrini, R., Bonfante, P., & Perotto, S. (2001). Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. European Journal of Histochemistry, 45, 39–49.

    Google Scholar 

  • Bloemberg, G. V., & Camacho, M. (2006). Microbial interactions with plants; a hidden world? In: B. Schultz, C. Boyle & T. Sieber (Eds.), Soil biology, volume 9, microbial root endophytes (pp. 321–336). Heidelberg: Springer Verlag Berlin.

    Chapter  Google Scholar 

  • Bloemberg, G. V., Lagopodi A., de Bruijn, F. J., & Jansson, J. K. (2004). Visualisation of microbes and their interactions in the rhizosphere using auto fluorescent proteins as markers. In: G. A. Kowalchuk, F. J. de Bruijn, I. M Head, A. D. Akkermans & J. D. v. Elsas (Eds.), Molecular microbial ecology manual (pp. 1257–1280). Heidelberg: Springer Berlin.

    Google Scholar 

  • Bloemberg, G. V., & Lugtenberg, B. J. J. (2004). Biofilm formation on plants, their relevance and phenotypic aspects. In: Ghannoum, & G. O’Toole (Eds.). Microbial biofilms (pp. 141–159). Washington, D.C.: ASM press.

    Google Scholar 

  • Bloemberg, G. V., Wijfjes, A. H. M., Lamers, G. E. M., Stuurman, N., & Lugtenberg, B. J. J. (2000). Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere; new perspectives for studying microbial communities. Molecular Plant Microbe Interactions, 13, 1170–1176.

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg, G. V., O’Toole, G., Lugtenberg, B. J. J., & Kolter, R. (1997). Green fluorescent protein as a marker for Pseudomonas spp. Applied and Environmental Microbiology, 63, 4543–4551.

    CAS  PubMed  Google Scholar 

  • Bolwerk, A., Lagopodi, A. L., Wijfjes, A. H. M., Lamers, G. E. M., Chin-A-Woeng, T. F. C., Lugtenberg, B. J. J., & Bloemberg, G. V. (2003). Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Molecular Plant-Microbe Interactions, 16, 983–993.

    Article  CAS  PubMed  Google Scholar 

  • Burlage, R. S., Yang, Z. K., & Mehlhorn, T. (1995). A transposon for green fluorescent protein transcriptional fusions: Applications for bacterial experiments. Gene, 173, 53–58.

    Article  Google Scholar 

  • Chalfie M., Kain S. R. (Eds.) (2005). Green fluorescent protein: Properties, applications and protocols (Methods of Biochemical Analysis, Vol 47). New York: Wiley.

    Google Scholar 

  • Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., & Prasher, D. C. (1994). Green fluorescent protein as a marker for gene expression. Science, 263, 802–805.

    Article  CAS  PubMed  Google Scholar 

  • Dandie, C. E., Larrainzar, E., Mark, G. L., O’Gara, F., & Morrisey, J. P. (2005). Establishment of DsRed.T3_S4T as an improved autofluorescent marker for microbial ecology applications. Environmental Microbiology, 7, 1818–1825.

    Article  CAS  PubMed  Google Scholar 

  • DeAngelis, K. M., Ji, P., Firestone, M. K., & Lindow, S. E. (2005). Two novel bacterial biosensors for detection of nitrate availability in the rhizosphere. Applied and Environmental Microbiology, 71, 8537–8547.

    Article  CAS  PubMed  Google Scholar 

  • de Groot, M. J., Bundock, P., Hooykaas, P. J., & Beijersbergen, A. G. (1998). Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotechnology, 16, 839–842.

    Article  PubMed  Google Scholar 

  • Dekkers, L. C., Mulders, I. H., Phoelich, C. C., Chin-A-Woeng, T. F. C., Wijfjes, A. H. M., & Lugtenberg, B. J. J. (2000). The sss colonization gene of the tomato-Fusarium oxysporum f.sp. radicis lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type Pseudomonas spp. bacteria. Molecular Plant Microbe Interactions, 13, 1177–1183.

    Article  CAS  PubMed  Google Scholar 

  • Elbeltagy, A., Nishioka, K., Sato, T., Suzuki, H., Ye, B., Hamada, T., Isawa, T., Mitsui, H., & Minamisawa, K. (2001). Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Applied and Environmental Microbiology, 67, 5285–5293.

    Article  CAS  PubMed  Google Scholar 

  • Ellenberg, J., Lippincott, S. J., & Presley, J. F. (1999). Dual-colour imaging with GFP variants. Trends in Cell Biology, 9, 52–56.

    Article  CAS  PubMed  Google Scholar 

  • Gage, D. J. (2002). Analysis of infection thread development using Gfp-and DsRed-expressing Sinorhizobium meliloti. Journal of Bacteriology, 184, 7042–7046.

    Article  CAS  PubMed  Google Scholar 

  • Gage, D. J., Bobo, T., & Long, S. R. (1996). Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). Journal of Bacteriology, 178, 7159–7166.

    CAS  PubMed  Google Scholar 

  • Gamalero, E., Lingua, G., Tombolini, R., Avidano, L., Pivato, B., & Berta, G. (2005). Colonization of tomato root seedling by Pseudomonas fluorescens 92 rkG5: Spatiotemporal dynamics, localization, organization, viability, and culturability. Microbial Ecology, 50, 289–297.

    Article  PubMed  Google Scholar 

  • Gotz, M., Gomes, N. C., Dratwinski, A., Costa, R., Berg, G., Peixoto, R., Mendonca-Hagler, L., & Smalla, K. (2006). Survival of gfp-tagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community. FEMS Microbiology Ecology, 56, 207–218.

    Article  PubMed  Google Scholar 

  • Heeb, S., Itoh, Y., Nishijyo, T., Schnider, U., Keel, C., Wade, J., Walsh, U., O’Gara, F., & Haas, D. (2000). Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. Molecular Plant-Microbe Interactions, 13, 232–237.

    Article  CAS  PubMed  Google Scholar 

  • Heim, R., Prasher, D. C., & Tsien, R. Y. (1994). Wavelength mutations and post-translational autoxidation of green fluorescent protein. Proceedings National Academy of Sciences USA., 91, 12501–12504.

    Article  CAS  Google Scholar 

  • Izallalen M., Levesque, R. C., Perret, X., Broughton, W. J., & Antoun, H. (2002). Broad-host-range mobilizable suicide vectors for promoter trapping in gram-negative bacteria. Biotechniques, 33, 1038–1043.

    CAS  PubMed  Google Scholar 

  • Karunakaran, R., Ebert, K., Harvey, S., Leonard, M. E., Ramachandran, V., & Poole, S. P. (2006). Thiamine is synthesized by a salvage pathway in Rhizobium leguminosarum bv. viciae strain 3841. Journal of Bacteriology, 188, 6661–6668.

    Article  CAS  PubMed  Google Scholar 

  • Kuiper, I., Kravchenkov, L., Bloemberg, G. V., & Lugtenberg, B. J. J. (2002). Pseudomonas putida strain PCL1444, selected for efficient root colonization and naphthalene degradation, effectively utilizes root exudates components. Molecular Plant Microbe Interactions, 15, 734–741.

    Article  CAS  PubMed  Google Scholar 

  • Lagopodi, A. L., Ram, A. F. J., Lamers, G. E. M., Punt, P. J., van den Hondel, C. A. M. J., Lugtenberg, B. J. J., & Bloemberg, G. V. (2002). Confocal laser scanning microscopical analysis of tomato root colonization and infection by Fusarium oxysporum f.sp. radicis-lycopersici using the green fluorescent protein as a marker. Molecular Plant Microbe Interactions, 15, 172–179.

    Article  CAS  PubMed  Google Scholar 

  • Larrainzar, E., O’Gara, F., & Morrisey, J. P. (2005). Applications of autofluorescent proteins for in situ studies in microbial ecology. Annual Review of Microbiology, 59, 257–277.

    Article  CAS  PubMed  Google Scholar 

  • Leveau, J. H., & Lindow, S. E. (2001). Appetite of an epiphyte: Quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proceedings of the National Academy of Sciences USA, 98, 3446–3453.

    Article  CAS  Google Scholar 

  • Leveau, J. H., & Lindow, S. E. (2002). Bioreporters in microbial ecology. Current Opinion in Microbiology, 5, 259–265.

    Article  PubMed  Google Scholar 

  • Lübeck, P. S., Hansen, M., & Sørensen, J. (2000). Simultaneous detection of the establishment of seed-inoculated Pseudomonas fluorescens strain Dr54 and native soil bacteria on sugar beet root surfaces using fluorescense antibody and in situ hybridization techniques. FEMS Microbiology Ecology, 33, 11–19.

    Article  PubMed  Google Scholar 

  • Lu, Z., Tombolini, R., Woo, S., Zeilinger, S., Lorito, M., & Jansson, J. K. (2004). In vivo study of trichodenna-pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems. Applied and Environmental Microbiology, 70, 3073–3081.

    Article  CAS  PubMed  Google Scholar 

  • Matus, A. (1999). GFP in motion CD-ROM — Introduction: GFP illuminates everything. Trends in Cell Biology, 9, 43.

    Article  Google Scholar 

  • Matz, M. M. V., Fradkov, A. F., Labas, Y.A., Savitsky, A. P., Zaraisky, A. G., Markelov, M. L., & Lukyanov, S. A. (1999). Fluorescent proteins from non-bioluminescent Anthozoa species. Nature Biotechnology, 17, 969–973.

    Article  CAS  PubMed  Google Scholar 

  • Michielse, C. B., Hooykaas, P. J., van den Hondel, C. A., & Ram A. F. (2005). Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current Genetics, 48, 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Molbak, L., Molin, S., & Kroer, N. (2006). Root growth and exudate production define the frequency of horizontal plasmid transfer in the rhizosphere. FEMS Microbiology Ecology, 59, 167–176.

    Article  PubMed  Google Scholar 

  • Newman, K. L., Almeida, R. P., Purcell, A. H., & Lindow, S. E. (2003). Use of a green fluorescent strain for analysis of Xylella fastidiosa colonization of Vitis vinifera. Applied and Environmental Microbiology, 69, 7319–7327.

    Article  CAS  PubMed  Google Scholar 

  • Ramos, H. J., Roncato-Maccari, L. D., Souza, F. M., Soares-Ramos, J. R., Hungria, M., & Pedrosa, F. O. (2002). Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. Journal of Biotechnology, 97, 243–252.

    Article  CAS  PubMed  Google Scholar 

  • Ramos, C., Molbak, L., & Molin, S. (2000). Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates. Applied and Environmental Microbiology, 66, 801–809.

    Article  CAS  PubMed  Google Scholar 

  • Rediers, H., Rainey, P. B., Vanderleyden, J., & De Mot, R. (2005). Unraveling the secret lives of bacteria: Use of in vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche specific gene expression. Microbiology and Molecular Biology Reviews, 69, 217–261.

    Article  CAS  PubMed  Google Scholar 

  • Rothballer, M., Schmid, M., Fekete, A., & Hartmann, A. (2005). Comparative in situ analysis of ipdC-gfpmut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245. Environmental Microbiology, 7, 1839–1846.

    Article  CAS  PubMed  Google Scholar 

  • Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N. G., Palmer, A. E., & Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnology, 22, 1567–1572.

    Article  CAS  PubMed  Google Scholar 

  • Sorensen, M., Lippuner, C., Kaiser, T., Misslitz, A., Aebischer, T., & Bumann, D. (2003). Rapidly maturing red fluorescent protein variants with strongly enhanced brightness in bacteria. FEBS Letters, 552, 110–114.

    Article  CAS  PubMed  Google Scholar 

  • Steidle, A., Sigl, K., Schuhegger, R., Ihring, A., Schmid, M., Gantner, S., Stoffels, M., Riedel, K., Givskov, M., Hartman, A., Langebartels, C., & Eberl, L. (2001). Visualisation of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Applied and Environmental Microbiology, 67, 5761–5770.

    Article  CAS  PubMed  Google Scholar 

  • Stuurman, N., Pacios Bras, C., Schlaman, C. H. R. M., Wijfjes, A. H. M., Bloemberg, G. V., & Spaink, H. P. (2000). The use of GFP color variants expressed on stable broad-host range vectors to visualize rhizobia interacting with plants. Molecular Plant-Microbe Interactions, 13, 1063–1069.

    Article  Google Scholar 

  • Tombolini, R., Unge, A., Davey, M. E., de Bruijn, F. J., & Jansson, J. K. (1997). Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria. FEMS Microbiology Ecology, 22, 17–28.

    Article  CAS  Google Scholar 

  • Tombolini, R., van der Gaag, D. J., Gerhardson, B., & Jansson, J. K. (1999). Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA342 on barley seeds visualized by using green fluorescent protein. Applied and Environmental Microbiology, 65, 3674–3680.

    CAS  PubMed  Google Scholar 

  • Tsien, R. Y. (1998). The green fluorescent protein. Annual Reviews of Biochemistry, 67, 509–544.

    Article  CAS  Google Scholar 

  • Unge, A., Tombolini, R., Moller, A., & Jansson, J. K. (1997). Optimization of GFP as a marker for detection of bacteria in environmental samples. In: J. W. Hastings, L. J. Kricka & P. E. Stanley (Eds.). 9th International Symposium on bioluminescence and chemiluminescence: Proceedings volume: Bioluminescence and Chemiluminescence: Molecular Reporting With Photons.

    Google Scholar 

  • Unge, A., Tombolini, R., Molbak, L., & Jansson, J. K. (1999). Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Applied and Environmental Microbiology, 65, 813–821.

    CAS  PubMed  Google Scholar 

  • Unge, A., & Jansson, J. K. (2001). Monitoring population size, activity, and distribution of gfp-luxAB-tagged Pseudomonas fluorescens SBW25 during colonization of wheat. Microbiology Ecology, 41, 290–300.

    CAS  Google Scholar 

  • Utermark, J., & Karlovsky, P. (2006). Quantification of green fluorescent protein fluorescence using real-time PCR thermal cycler. Biotechniques, 41, 150–154.

    Article  CAS  PubMed  Google Scholar 

  • Xi, C., Lambrecht, M., Vanderleyden, J., & Michiels, J. (1999). Bi-functionatal gfp-and gusA~containing mini-Tn5 transposon derivatives for combined gene expression and bacterial localization studies. Journal of Microbiological Methods, 35, 85–92.

    Article  Google Scholar 

  • Yang, T. T., Sina, P., Green, G., Kitts, P. A., Chen, Y. T., Lybarger, L., Chervenak, R., Patterson, G. H., Piston, D. W., & Kain, S. R. (1998). Improved fluorescence and dual color detection with enhanced blue and green variants of the green fluorescent protein. Journal of Biological Chemistry, 273, 8212–8216.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido V. Bloemberg .

Editor information

P. A. H. M. Bakker J. M. Raaijmakers G. Bloemberg M. Höfte P. Lemanceau B. M. Cooke

Rights and permissions

Reprints and permissions

Copyright information

© 2007 KNPV

About this chapter

Cite this chapter

Bloemberg, G.V. (2007). Microscopic analysis of plant-bacterium interactions using auto fluorescent proteins. In: Bakker, P.A.H.M., Raaijmakers, J.M., Bloemberg, G., Höfte, M., Lemanceau, P., Cooke, B.M. (eds) New Perspectives and Approaches in Plant Growth-Promoting Rhizobacteria Research. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6776-1_6

Download citation

Publish with us

Policies and ethics