Optical Remote Sensing Applications in the Baltic Sea

  • H. Siegel
  • M. Gerth

The main applications of ocean colour satellite data in the Baltic Sea (Case 2 water) are coastal discharge and phytoplankton blooms. These processes generate the variations of optically active water constituents. The phytoplankton development is characterised by a spring bloom of diatoms and dinoflagellates, and a summer bloom of nitrogen-fixating cyanobacteria. The blooms depend strongly on the meteorological conditions. Distribution of river discharge was intensely investigated in the Pomeranian Bight, the Oder River discharge area. Satellite data of different spectral and spatial resolution has been used. Information on oceanographic conditions was derived from Sea Surface Temperature. The implementation of satel lite data improved the Baltic Sea research due to the synoptic character enables to transfer detailed ship-borne measurements to larger spatial and temporal scales.


Phytoplankton Bloom Advanced Very High Resolution Radiometer Advanced Very High Resolution Radiometer Spring Bloom Ocean Colour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brosin HJ, Gohs L, Seifert T, Siegel H, Byckova IA, Viktorov SV, Demina MD, Lobanov VJ, Losinskij VN, Smoljanickij VM (1988) Mesoskale Strukturen in der südlichen Ostsee im Mai 1985. Beiträge zur Meereskunde 58: 8-18Google Scholar
  2. Darecki M, Kaczmarek S, Olszewski J (2005) SeaWiFS oceancolour chlorophyll algorithms for the southern Baltic Sea. Int. J. Remote Sensing 26 (2): 247-260CrossRefGoogle Scholar
  3. Doerffer R, Sorensen K, Aiken J (1999) MERIS potential for coastal zone applications. Int. J. Remote Sensing 20: 1809-1818CrossRefGoogle Scholar
  4. Dowell MD (1996) Optically Active Components and Their Relationship with Meso-Scale Features in Baltic Coastal Zone. Marine Science Reports, IOW 19, pp 114-139Google Scholar
  5. HELCOM (2004) Thematic Report on Validation of Algorithms for Chlorophyll a Retrieval from Satellite Data of the Baltic Sea Area. Baltic Sea Environment Proc. 94, pp 44Google Scholar
  6. Horstmann U (1983) Distribution patterns of temperature and water colour in the Baltic Sea as recorded in satellite images: Indicators for phytoplankton growth. Berichte Institut für Meereskunde Kiel, 106, pp 145Google Scholar
  7. Horstmann U (1988) Satellite remote sensing for estimating coastal offshore transports. In: Jansson BO (ed) Lecture Notes on Coastal and Esturine Studies, vol 22, Coastal-Offshore Ecosystem Interactions, pp 50-66.Google Scholar
  8. Kahru M (1997) Using satellites to monitor large-scale environmental change: A case study of cyanobacteria blooms in the Baltic Sea. In: Kahru M, Brown CW (eds) Monitoring Algal Blooms. Springer-Verlag, Berlin Heidelberg New York, pp 43-57Google Scholar
  9. Kahru M, Horstmann U, Rud O (1994) Satellite detection of increased Cyanobacteria blooms in the Baltic Sea: Natural fluctuations or ecosystem change? Ambio 23 (8): 469-472Google Scholar
  10. Kononen K, Leppänen JM (1997) Patchiness, scales and controlling mechanisms of cyanobacterial blooms in the Baltic Sea: Application of a multiscale research strategy. In: Kahru M, Brown CW (eds) Monitoring Algal Blooms. Springer-Verlag, Berlin Heidelberg New York, pp 43-57Google Scholar
  11. Kutser T (2004) Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnol. Oceanogr., 49 (6): 2179-2189.CrossRefGoogle Scholar
  12. Matthäus W (2006) The history of investigation of salt water inflows into the Baltic Sea. Marine Science Report, IOW 65, pp 73Google Scholar
  13. Mazur-Marzec H, Krężel A, Kobos J, Pliński M (2006) Toxic Nodularia spumigena blooms in the coastal waters of the Gulf of Gdańsk: a ten-year survey. Oceanologia, 48 (2): 255-273Google Scholar
  14. Ohde T, Siegel H (2001) Correction of bottom influence in ocean colour satellite images of shallow water areas of the Baltic Sea. Int. J. Remote Sensing 22 (2/3): 297-313Google Scholar
  15. Ohde T, Siegel H, Gerth M (2007) Results of MERIS Level-2 product validation in the Baltic Sea, the Namibian coastal area and the Atlantic Ocean. International Journal of Remote Sensing 28 (3-4): 609-624CrossRefGoogle Scholar
  16. Öström B (1976) Fertilization of the Baltic by nitrogen fixation in the blue-green algae Nodularia spumigena. Remote Sensing of the Environment 4: 305-310CrossRefGoogle Scholar
  17. Ruddick KG, Ovidio F, Rijkeboer M (2000) Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. Applied Optics 39 (6): 897-912CrossRefGoogle Scholar
  18. Schiller H, Doerffer R (1999) Neural network for emulation of an inverse model -operational derivation of Case 2 water properties from MERIS data. Int. J. Remote Sensing 20: 1735-1746CrossRefGoogle Scholar
  19. Schrimpf W, Zibordi G, Mélin F, Djavidnia S (2005) Chlorophyll-a concentrations, temporal variations and regional differences from satellite remote sensing. HELCOM,
  20. Seppälä J, Ylöstalo P, Kuosa H (2005) Spectral absorption and fluorescence characteristics of phytoplankton in different size fractions across a salinity gradient in the Baltic Sea. Int. J. Remote Sensing 26 (2): 387-414CrossRefGoogle Scholar
  21. Siegel H (1991) Empirical algorithms for the determination of chlorophyll by remote sensing methods. Beiträge zur Meereskunde, Berlin 62, pp 69-78Google Scholar
  22. Siegel H, Gerth M (2000) The exceptional summer 1997 in the Baltic Sea - The warmest August, the Oder flood, and phytoplankton blooms. In: Halpern D (ed) Satellites, Oceanography and Society. Elsevier Ocean. Ser., pp 239-254Google Scholar
  23. Siegel H, Gerth M, Mutzke A (1999a) Dynamics of the Oder River Plume in the Southern Baltic Sea - Satellite data and Numerical Modelling. Continental Shelf Research 18: 1143-1159CrossRefGoogle Scholar
  24. Siegel H, Gerth M, Schmidt T (1996) Water exchange in the Pomeranian Bight investigated by satellite data and ship-borne measurements. Continental Shelf Research 16 (14): 1793-1817CrossRefGoogle Scholar
  25. Siegel H, Gerth M, Ohde T (1999b) Remote sensing of phytoplankton blooming in the Baltic Sea using SeaWiFS data. In: IGARSS ‘99 Proc. IEEE Int. Geo-science and Rem. Sens. Symp., 28.6. - 2 .7.1999, Hamburg. Piscataway: IEEE 2: 837-839Google Scholar
  26. Siegel H, Gerth M, Ohde T (2002) Remote Sensing Applications. In: Schernewski G, Schiewer U (eds) Baltic coastal ecosystems: structure, function and coastal zone management. CEEDES Series, Springer, pp 279-292Google Scholar
  27. Siegel H, Ohde T, Gerth M (2001) SeaWiFS validation and application in the Baltic Sea. In: Proc. 4th Workshop on Ocean Remote Sensing, 30 May-1 June 2001, Berlin, pp 97-105Google Scholar
  28. Siegel H, Gerth M, Neumann T, Doerffer R (1999c) Case studies on phytoplankton blooms in coastal and open waters of the Baltic Sea using Coastal Zone Colour Scanner data. Int. J. Remote Sensing 20 (7): 1249-1264CrossRefGoogle Scholar
  29. Siegel H, Gerth M, Ohde T, Heene T (2005) Ocean colour remote sensing relevant water constituents and optical properties of the Baltic Sea. Int. J. Remote Sensing 26 (2): 315-330CrossRefGoogle Scholar
  30. Siegel H, Seifert T, Schernewski G, Gerth M, Reißmann J, Ohde T, Podsetchine V (2005b) Discharge and transport processes along the German Baltic Sea Coast. Ocean Dynamics 55 (1): 47-66CrossRefGoogle Scholar
  31. Ulbricht KA, Schmidt D (1977) Massenauftreten mariner Blaualgen in der Ostsee auf Satellitenaufnahmen erkannt. DFVLR-Nachrichten, No. 22, pp 913-915Google Scholar
  32. Vepsäläinen J, Pyhälahti T, Rantajärvi E, Kallio K, Pertola S, Stipa T, Kiirikki M, Pulliainen J, Seppälä J (2005) The combined use of optical remote sensing data and unattended fluorometer measurements in the Baltic Sea. Int. J. Remote Sensing 26 (2): 261- 282CrossRefGoogle Scholar
  33. Wasmund N, Pollehne F, Postel L, Siegel H, Zettler M (2001) Biologische Zustandseinschätzung der Ostsee im Jahre 2000. Marine Science Report, Baltic Sea Research Institute Warnemünde, 46, pp 74Google Scholar
  34. Wasmund N (1997) Occurrence of cyanobacterial blooms in the Baltic Sea in relation to environmental conditions. Int. Revue ges. Hydrobiol. 82: 169-184CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • H. Siegel
    • 1
  • M. Gerth
    • 1
  1. 1.Baltic Sea Research InstituteGermany

Personalised recommendations