Advertisement

Optical Remote Sensing of the North Sea

  • K. Ruddick
  • G. Lacroix
  • C. Lancelot
  • B. Nechad
  • Y. Park
  • S. Peters
  • B. Van Mol

Optical remote sensing in the North Sea is reviewed with a focus on applications supporting environmental management. Optical remote sensing provides estimates of Chlorophyll a, total suspended matter and diffuse attenuation coefficient and related parameters. These are used for harmful algal bloom detection, eutrophication assessment, ecosystem and sediment transport modeling, and estimation of air-sea carbon fluxes.

Keywords

Sediment Transport Water Framework Directive Coloured Dissolve Organic Matter Total Suspend Matter Photosynthetically Available Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borges AV, Frankignoulle M (2003) Distribution of surface carbon dioxide and air-sea exchange in the English Channel and adjacent areas. J Geophys Res 108 (C5): 10.1029, doi:2000JC000571Google Scholar
  2. Brockmann Consult. Water Quality Service System (www.waqss.de)
  3. Doron M, Babin M, Mangin A, Fanton d’Andon O (2005) Retrieval of the penetration of light and horizontal visibility in coastal waters from ocean color remote sensing data, p 85-94. In Frouin RJ, Babin M, Sathyendranath S (eds), Remote Sensing of the Coastal Oceanic Environment. SPIEGoogle Scholar
  4. Druon J-N, Loyer S, Gohin F (2005) Scaling of coastal phytoplankton features by optical remote sensors: comparison with a regional ecosystem model. Int J Rem Sens 26: 4421-4444CrossRefGoogle Scholar
  5. Duin R, Dury S, Roberti H (2007) Towards operational use of MERIS and SeaWiFS data for water quality monitoring: challenges for the end-user. In: Bochenek Z (ed), New developments and challenges in Remote Sensing. Millpress, pp 575-590Google Scholar
  6. Edelvang K, Kaas H, Erichsen C, Alvarez-Berastegui D, Bundgaard K, Jorgensen PV (2005) Numerical modelling of phytoplankton biomass in coastal waters. J Mar Sys 57: 13-29CrossRefGoogle Scholar
  7. Eisma D (1981) Supply and deposition of suspended matter in the North Sea. Spec Publs Int Ass Sediment 5: 415-428Google Scholar
  8. Eleveld MA, Pasterkamp R, Van Der Woerd HJ (2004) A survey of total suspended matter in the Southern North Sea based on 2001 SeaWiFS data. EARSeL eProc 3: 166-178Google Scholar
  9. Fettweis M, Nechad B, Van Den Eynde D (2007) An estimate of the suspended particulate matter (SPM) transport in the southern North Sea using SeaWiFS images, in situ measurements and numerical model results. Cont Shelf Res 27: 1568-1583CrossRefGoogle Scholar
  10. Gemein N, Stanev E, Brink-Spalink G, Wolff J-O, Reuter R (2006) Patterns of suspended matter in the East Frisian Wadden Sea: comparison of numerical simulations with MERIS observations. EARSeL eProc 5: 180-198Google Scholar
  11. Gohin F, Lozach L, Oger-Jeanneret H, Lampert L, Lefebvre A (2006) Assessing the evolution of the chlorophyll concentration at coastal stations using satellite and in situ data, p 1-10. OceanOpticsConference 2006. CDROMGoogle Scholar
  12. IFREMER. NAUSICAA - Navigating through Satellite and In situ data over local areas (http://www.ifremer.fr/nausicaa/marcoast/index.htm)
  13. Lacroix G, Ruddick K, Park Y, Gypens N, Lancelot C (2007) Validation of the 3D biogeochemical model MIRO&CO with field nutrient and phytoplankton data and MERIS-derived surface Chlorophyll a images. J Mar Sys 64 (1-4): 66-88CrossRefGoogle Scholar
  14. Lancelot C (1995) The mucilage phenomenon in the continental coastal waters of the North sea. Sci Total Env 165: 83-102CrossRefGoogle Scholar
  15. Lohrenz SE, Cai W-J (2006) Satellite ocean color assessment of air-sea fluxes of CO2 in a river-dominated coastal margin. Geophys Res Lett 33, L01601, doi:10.1029/2005GL023942CrossRefGoogle Scholar
  16. Miller PI, Shutler JD, Moore GF, Groom SB (2006) SeaWiFS discrimination of harmful algal bloom evolution. Int J Rem Sens 27: 287-2301Google Scholar
  17. NERSC. Near Real-Time Algal Bloom and Water Quality Monitoring Services for the North Sea and Skagerak Region (hab.nersc.no)Google Scholar
  18. Otto L, Zimmerman JTF, Furnes GK, Mork M, Saetre R, Becker G (1990) Physical Oceanography of the North Sea. Neth J Sea Res 26: 161-238CrossRefGoogle Scholar
  19. Park Y, Ruddick K (2007) Detecting algae blooms in European waters. In: ENVISAT symposium. European Space Agency Special Publication SP-636Google Scholar
  20. Peperzak L (2002) The wax and wane of Phaeocystis globosa blooms. PhD thesis. Rijksuniversiteit GroningenGoogle Scholar
  21. Peters, SWM and 18 others (2005) Atlas of Chlorophyll-a concentration for the North Sea based on MERIS imagery of 2003. Vrije Universiteit, AmsterdamGoogle Scholar
  22. Pleskachevsky A, Gayer G, Horstmann J, Rosenthal W (2005) Synergy of satellite remote sensing and numerical modelling for monitoring of suspended particulate matter. Ocean Dynamics 55: 2-9CrossRefGoogle Scholar
  23. Prandle D, Hydes DJ, Jarvis J, McManus J (1997) The seasonal cycles of temperature, salinity, nutrients and suspended sediment in the southern North Sea in 1988 and 1989. Est Coast Shelf Sci 45: 669-680CrossRefGoogle Scholar
  24. Ruddick K, Lacroix G, Park Y, Rousseau V, De Cauwer V, Sterckx S (2007) Overview of Ocean Colour: theoretical background, sensors and applicability for the detection and monitoring of harmful algae blooms (capabilities and limitations). In: Babin M, Roesler C, Cullen J (eds) Real-time coastal observing systems for ecosystem dynamics and harmful algal blooms. UNESCO Monographs on Oceanographic Methodology Series. UNESCO publishing, ParisGoogle Scholar
  25. Rutten T, Roberti H, Ohm M (2006) Algenplagen beter voorspelbaar, Zoutkrant 2: 5Google Scholar
  26. Sorensen K, Severinsen GG, Aertebjerg G, Barale V, Schiller C (2002) Remote sensing’s contribution to evaluating eutrophication in marine and coastal waters. European Environment AgencyGoogle Scholar
  27. Stumpf RP (2001) Applications of satellite ocean color sensors for monitoring and predicting harmful algal blooms. Hum Ecol Risk Ass 7: 1363-1368CrossRefGoogle Scholar
  28. Stumpf RP, Tomlinson MC (2005) Remote sensing of harmful algae blooms. In: Miller R, Castillo CD, McKee B (eds), Remote sensing of coastal aquatic environments: technologies, techniques and applications. Kluwer.Google Scholar
  29. Thomson AG, Fuller RM, Yates MG, Brown SL, Cox R, Wadsworth RA (2003) The use of airborne remote sensing for extensive mapping of intertidal sediments and saltmarshes in eastern England. Int J Rem Sens 24: 2717-2737CrossRefGoogle Scholar
  30. Van Den Berg AJ, Turner SM, Van Duyl FC, Ruardij P (1996) Model structure and analysis of dimethylsulphide (DMS) production in the southern North Sea, considering phytoplankton dimethylsulphoniopropionate (DMSP) lyase and eutrophication effects. Mar Ecol Prog Ser 145: 233-244CrossRefGoogle Scholar
  31. Vos RJ, Brummelhuis PGJT, Gerritsen H (2000) Integrated data-modelling approach for suspended sediment transport on a regional scale. Coast Eng 41: 177-200CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • K. Ruddick
    • 1
  • G. Lacroix
    • 1
  • C. Lancelot
    • 2
  • B. Nechad
    • 1
  • Y. Park
    • 1
  • S. Peters
    • 3
  • B. Van Mol
    • 1
  1. 1.Royal Institute for Natural SciencesBelgium
  2. 2.Ecology of Aquatic SytremsFree University of BrusselsBelgium
  3. 3.Faculty of Earth and Life SciencesFree University of AmsterdamNetherlands

Personalised recommendations